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High-throughput density functional theory (HT DFT) is fast becoming a
powerful tool for accelerating materials design and discovery by the amassing
tens and even hundreds of thousands of DFT calculations in large databases.
Complex materials problems can be approached much more efficiently and
broadly through the sheer quantity of structures and chemistries available in
such databases. Our HT DFT database, the Open Quantum Materials Data-
base (OQMD), contains over 200,000 DFT calculated crystal structures and
will be freely available for public use at http://oqmd.org. In this review, we
describe the OQMD and its use in five materials problems, spanning a wide
range of applications and materials types: (I) Li-air battery combination cat-
alyst/electrodes, (II) Li-ion battery anodes, (III) Li-ion battery cathode coat-
ings reactive with HF, (IV) Mg-alloy long-period stacking ordered (LPSO)
strengthening precipitates, and (V) training a machine learning model to
predict new stable ternary compounds.

INTRODUCTION

A foundational concept in materials science and
engineering is the processing/structure/properties
paradigm: processing determines structure, which
in turn defines observed properties. The close ties
between structure and properties are historically
evident in the development of models to describe
materials behavior (e.g., vacancy and dislocation
theory). Currently, ab initio predictive models of
properties based on structure are commonplace,
which has enabled a growing trend in materials
design: experimental synthesis in tandem with
predictive modeling to facilitate the optimization of
materials properties. The promise of such an ap-
proach is to dramatically reduce development time
for novel materials with innovative design tools and
methods. Indeed, accelerating materials design is
the primary goal and motivation for the U.S.
Materials Genome Initiative.1

A critical innovation toward accelerating materi-
als design has been accurate and efficient first-
principles prediction of materials properties with
density functional theory (DFT). Employing only

quantum mechanical concepts and little experimen-
tal input, DFT allows one to predict properties of
crystalline solids such as lattice parameters, mag-
netic moments, formation energies, band structures,
etc. Although the fundamental concepts underlying
DFT was developed in the 1960s,2,3 it took 20 years
or so for the practical application of the theory with
efficient DFT codes and algorithms.4–7 Since then,
DFT has been one of the great successes in modeling
materials behavior.8 With ever-increasing computa-
tional power at lower costs and improvements in
computational algorithms, the cpu time to perform
DFT calculations has been steadily declining to the
point that performing large-scale calculations on the
order of tens or hundreds of thousands of structures
is possible in a reasonable amount of time. So-called
high-throughput (HT) DFT calculations enable the
generation of large databases of DFT-predicted
materials properties,9 which can accelerate materi-
als design through direct searches of materials with
desired properties or the development of higher-level
models (e.g., data mining).

Several efforts are underway to generate large-
scale HT DFT databases, including the Open
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Quantum Materials Database (OQMD),10 the
Materials Project,11 the Computational Materials
Repository,12 and AFLOWLIB.13 We have developed
the OQMD, which is an extensive HT DFT database
consisting of DFT predicted crystallographic
parameters and formation energies for over 200,000
experimentally observed International Crystal
Structure Database (ICSD)14,15 and theoretical
prototype structures, discussed in more detail in the
section titled ‘‘The OQMD and DFT Accuracy’’. An
important feature of the OQMD is the open nature
of our database, meaning we will provide access to
the complete database without limitation for the
community to use, strongly in line with the Mate-
rials Genome Initiative.1 In the coming months, we
will make the OQMD accessible over the web at
http://oqmd.org, with a download option available
for the database files themselves and the code to use
them.

Since the development and application of the
earliest HT DFT database,16 HT DFT has proven to
be a successful tool for many and varied materials
problems.17–25 In this article, we summarize our
own HT DFT efforts, beginning with a description of
the OQMD, including a broad comparison of DFT
formation energies to experimental values.10 We
then provide examples from our work of applying
HT DFT to several interesting materials problems.
First, we employ the OQMD to search for materials
with optimum properties for Li-air battery elec-
trodes,26 Li-ion battery anodes,27 and Li-ion battery
cathode coatings reactive with HF.28 Then, we use
the formation energies of the OQMD to test whether
novel Mg-alloy strengthening long-period stacking
ordered (LPSO) precipitates are thermodynamically
stable structures.29 Last, we describe the use of
OQMD formation energies to train a machine
learning model with which potential novel ternary
compounds are identified.30 We then conclude with
thoughts on the future development of HT DFT
databases.

THE OQMD AND DFT ACCURACY

The Open Quantum Materials Database is a col-
lection of consistently calculated DFT total energies
and relaxed crystal structures. Using the Vienna
Ab-initio Simulation Package (VASP),31,32 DFT
calculations have been performed for every unique
entry in the ICSD without partial site occupancy
and less than 35 atoms in the primitive cell, 32,489
structures as of August 2013.10 The OQMD serves
two primary functions: as a large set of data for
known structures from which optimum materials
can be searched (such as in the following sections:
‘‘High-Capacity Conversion Anode Screening’’,
‘‘Li2O Battery Screening’’, and ‘‘HF Scavenging Li-
Ion Battery Cathode Coatings’’) and as an accurate
description of the chemical potentials and convex
hulls of simple and complex systems from which
tests of stability can be readily performed (such as

in the following sections: ‘‘Searching for New
Strengthening Precipitates in Lightweight Mg
Alloys’’ and ‘‘Data Mining for Novel Ternary Com-
pounds’’). The OQMD is primarily limited by what
has been experimentally observed and catalogued in
the ICSD (i.e., there may exist novel unexplored
systems and compounds which are technologically
important, see the ‘‘Data Mining for Novel Ternary
Compounds’’ section). Toward resolving this issue,
we also include in the database DFT calculations of
many unary, binary, and ternary prototype struc-
tures. These include, for example, every possible
combination of A3B L12 and X2YZ heusler chemis-
tries for over 80 elements. The inclusion of these
prototypes in the OQMD provides an approximation
for unexplored convex hulls and possible undiscov-
ered compounds as they sample unexplored compo-
sitions and systems. The total number of structures
in the OQMD, including both ICSD structures and
prototypes, as of August 2013 is over 200,000 and is
growing every day.

For many materials applications, thermodynamic
stability is an important quantity. The long-term
stability of c¢ Co3(Al,W) L12 precipitate in Co-based
superalloys,33 hydrogen storage decomposition
pathways in metal borohydrides,34,35 and spinodal
decomposition in IV–VI rock salt thermoelectric
semiconductors36 are several examples where the
stability of phases is critical for understanding
materials behavior. For a compound to be stable, it
must not only be lower in energy than all other
compounds at that stoichiometry but also be lower
in energy than linear combinations of all other
compounds in a given system. Thus, an accurate
description of stability requires the calculation of
the phase in question (e.g., Co3 (Al,W)) and all other
competing phases in the given system (e.g., Co,
CoAl, and Co3W33). Because both the composition
and the free energy are linear as a function of
quantity of different phases in a system, the set of
phases that has the minimum total free energy at a
given composition can be determined by linear
programming. We have employed this approach,
grand canonical linear programming (GCLP),37 to
study hydrogen storage reactions,37,38 Li-battery
anode conversion materials,27 and general multi-
phase ground state stability.10 We have recently
revised GCLP to make it more efficient when
examining stability in highly multicomponent sys-
tems.39

As an example of the broad application of GCLP
with the DFT-calculated formation energies in the
OQMD, we used GCLP to determine how many
ICSD compounds in the OQMD are thermodynam-
ically stable at 0 K and zero pressure. Under these
conditions, 23% of the 32,489 calculated ICSD
structures are stable. Figure 1 shows the quantity
of total ICSD structures and OQMD-predicted sta-
ble structures by year of their discovery. Before
about 1960, most discovered compounds were also
thermodynamically stable. After 1960, the number
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of metastable structures per year grew rapidly,
outpacing the fairly constant rate of stable structure
discoveries. The surge in thermodynamically meta-
stable yet experimentally observed structures is
perhaps due to the advent of complex synthesis
techniques for strained and/or high-pressure struc-
tures, such as thin-film deposition and the diamond
anvil cell.

As a large database of DFT calculations, the
OQMD can be used to perform a broad comparison
of DFT predicted properties to experimental mea-
surements to assess the accuracy of the DFT
approach. We have done so for thermodynamic
stability by comparing 1290 DFT and experimen-
tally measured formation energies compiled in the
Scientific Group Thermodata Europe SSUB ther-
modynamic database.40 The SSUB does not contain
structural information about a given compound,
only a composition. Therefore, we compare an SSUB
formation energy to the most stable structure at
that composition predicted by DFT, as shown in
Fig. 2. The average error between DFT and experi-
mental formation energies is 24 meV/atom and the
mean absolute error is 113 meV/atom.

RESULTS—SUCCESSFUL APPLICATIONS
OF OQMD DATABASE

In the following sections, we will discuss five
examples from our work for the application of the
OQMD to materials design problems covering a
range of materials types.

High-Capacity Conversion Anode Screening

Because of their commercial significance and
amenability to simple bulk analysis with DFT,
batteries were one of the first areas to be tackled
using HT DFT.41,42 While previous high-throughput

studies have focused on the cathode of Li-ion bat-
teries, we have used the OQMD to search for novel
high-capacity anodes27 in three promising classes of
materials: transition metal silicides, stannides, and
phosphides. Although a patchwork of silicon,43–46

tin,47–50 and phosphorus51–55 compounds has been
explored as anode materials in the past, a complete
and systematic study of these materials had never
been undertaken. We studied this entire class of
materials, looking for promising battery reactions
based on a series of thermodynamic screens.

Important descriptors for a battery reaction are
voltage, gravimetric and volumetric capacity, and
volume expansion. The voltage is important in an
anode for two reasons: (I) In a low-voltage anode,
where the voltage is only slightly higher than that
of metallic lithium, lithium metal can form as den-
drites, introducing major safety risks, and (II) in a
high-voltage anode, the energy density of the total
cell is diminished. Finally, it has been observed that
internal stresses from the enormous volume
expansion associated with extremely high lithium
capacity in silicon lead to rapid cell degradation.56

We speculated that finding reactions which have
lower volume product phases may represent an
avenue to lower volume expansion—and improved
cyclability—in anode materials.

All three anode traits described can be calculated
from DFT-predicted ground-state thermodynamics.
We explored all possible Li-ion anode reactions
within the OQMD to find the optimum anode
material based on these quantities, as summarized
in Fig. 3. As a result of this screening process, sev-
eral conversion reactions were found that exhibited
high capacities, moderate voltages, and minimal
volume expansion. As a promising indicator of the

Fig. 1. The number of OQMD-predicted stable compounds and total
ICSD compounds by year of their discovery. The year for a structure
corresponds to the earliest publication year for ICSD entries at that
given structure’s composition and symmetry.

Fig. 2. Comparison of the DFT-predicted formation energies with
difference between the experimental40 and DFT values. The black
line indicates perfect agreement between the two, the solid red line
indicates the average agreement, and the dashed red lines one and
two standard deviations. Histograms are provided for both axes. The
thick red line corresponds to a normal distribution fitted to the his-
togram of the formation energy differences.
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selective ability of our screens, one of the anode
materials that passed through the screen was
CoSn—which is already a known anode material,57

currently employed as the active component of So-
ny’s Nexelion battery (Sony Corporation, Tokyo,
Japan). Sixteen potential candidate reactions were
predicted, three of which stood out as being the most
promising: TiP, LiSiNi2, and CoSi2.

Li2O Battery Screening

Recently, a new approach to lithium-air batteries
was described by Johnson et al.58 and Trahey
et al.59 in which Li5FeO4 was cycled in a cell open to
oxygen. In this system, after electrochemically de-
lithiating this material, a surprisingly high voltage
was observed. This high voltage covers a large
amount of capacity and is attributed to the rein-
sertion of Li2O units. When such novel reaction
types or battery architectures are developed, it is
tremendously efficient to survey the new field very
rapidly using a HT DFT database because the new
search space is so open to exploration. To that end,
the existing database of calculated structures in the
OQMD was employed to screen for other reactions
involving Li2O units that may follow a similar
path.26

To begin, the OQMD was used to define every
possible reaction of structures which satisfies the
equation

ðLi2OÞn � ðAxOyÞ $ m 2Liþ 1

2
O2ðgÞ

� �

þ ðLi2OÞn�m � ðAxOyÞ
(1)

where for the completeness of the search, ‘‘A’’ can be
any compound and not just an element. For instance,
Li4KAlO4 in this reaction can react to form KAlO2.
According to the search, 255 ‘‘A’’ compounds in the
ICSD can satisfy Eq. 1, as summarized in Fig. 4. The
stability of the compounds is then taken into account,
excluding reactions that do not occur by two-phase
equilibria (i.e., indirect).37,60 Last, several of addi-
tional constraints were applied to mimic the

constraints on real battery materials. Reactions were
terminated (I) when the reaction encountered a
material with a wide DFT bandgap; (II) when the
next decomposition step occurs at a high voltage,
such that it might endanger the electrolyte; or (III) if
the reaction passes through a region of phase equi-
libria containing more than two phases.

This reaction enumeration process was performed
under a set of very stringent requirements and again
at a wider tolerance. Once the reactions were deter-
mined, the results were screened for the highest
possible capacity. The best materials that were
identified by the very stringent requirements are
being disclosed in another publication,26 but among
the rest of the results were several known expected
reactions (which builds our confidence in the screen-
ing methodology), as well as several new, promising,
and previously unknown reactions. For instance, the
reaction that was the inspiration for this search
(Li5FeO4) was recovered, which supports the selec-
tion of reaction descriptors and screening criteria.
Several more reactions show potential when the less
strict screening conditions are used. Among these is
LiOH, which is the reaction product of Li-water
cells,35,61,62 which have been observed. Also predicted
is Li2CO3; it is the dead product phase of CO2 and
lithia, which is the reason CO2 must be scrubbed from
Li-air cells, and has also been studied as a possible
battery itself.63 As a result of this study, the list of
reactions that are likely worth experimental investi-
gation has been reduced from 255 to the 10 most likely
to yield high capacity and cyclability.26

HF Scavenging Li-Ion Battery Cathode
Coatings

Degradation of electrodes, induced by their con-
tact with the electrolyte, has to be suppressed to
improve the capacity retention and rate capability
of Li-ion batteries.64,65 Coating the cathode material

Fig. 3. Initial voltage and gravimetric capacity for transition metal
silicides, stannides, and phosphides lithiation reactions in the
OQMD. The color of the points is determined by the volume change
per lithium atom for the reaction. Fig. 4. Initial voltage and gravimetric capacity for HT DFT predicted

Li-ion anode reactions (Eq. 1). The color of each point indicates the
widest DFT bandgap of any step in the reaction, with red indicating
wide bandgap reactions and blue indicating narrow bandgap reac-
tions. The shape of the points indicates either direct (circles) or
indirect (crosses) reaction paths.
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is an effective remedy to retard the capacity fading
upon cycling,66,67 but experimentally testing all
coating candidates for a given cathode is a resource-
demanding task that requires fabrication, cycling,
and disassembly of the batteries. We have recently
performed an HT DFT screening of metal oxide
cathode coatings for Li-ion batteries to predict
promising coatings a priori.28 The hydrogen-fluoride
(HF) scavenging capability of the coating materials
was chosen as the primary design attribute because
the highly corrosive HF present in conventional
LiPF6-based electrolytes is known to attack the
cathode and trigger the dissolution of redox-active
metal ions into the electrolyte.64,68 Contemporary
battery technology requires functional coatings that
can preferentially react with HF in presence of the
cathode,69 beyond what is expected from a simple
protective barrier. We employ the OQMD to scan for
materials that can serve as HF scavengers.28

For an oxide coating MxO1
2

� �
; a generic HF-scav-

enging reaction producing its conjugate fluoride
(MxF) can be written as

MxO1
2
þHF!MxF +

1

2
H2O (2)

The free energy of this reaction, approximated as
the DFT enthalpy at T = 0 K (DHs-HF), is a natural
measure of the HF-scavenging capability of the
coating MxO1

2
. The first screening criterion was

selected as DHs-HF [coating]< DHs-HF [cathode] to
ensure the preferential reaction of HF with the
coating over the cathode material. However, to
estimate AHs-HF [cathode], a reaction between the
cathode material and HF (i.e., the HF-attack reac-
tion) analogous to Eq. 2 must be devised, such as
1
4 LiCoO2 þ HF! Product sð Þ þ 1

2 H2O for LiCoO2,
where one needs to specify the product(s). Our ap-
proach to this problem was to find the combination
of phases that yields the lowest energy at the
chemical composition corresponding to the prod-
uct(s) in the HF-attack reactions using GCLP along
with OQMD. Because the calculated DHs-HF [cath-
ode] values is on the order of �0.3 eV/HF for typical
cathode materials (LiCoO2, LiNiO2, LiMn2O4,
LiFePO4, etc.), the first screen amounts to finding
coating materials with DHs-HF values more negative
than –0.3 eV/HF. Volumetric (XV) and gravimetric
(XG) HF-scavenging capacities (defined as moles of
HF that a coating scavenges per unit volume and
gram, respectively) were introduced as additional
design parameters. As the volume of the coating
increases, it becomes more likely to impede Li and
electron transport, and as the mass of the coating
increases, specific properties (such as the energy
density) degrade. Consequently, to design optimal
coatings, both XV and XG need to be maximized.

Unlike the insertion cathodes with fast kinetics,
stable oxides and fluorides are expected to be lithi-
ated mostly via relatively sluggish conversion

reactions70,71 requiring significant overpotentials to
reverse upon charging. The overpotential may lead to
entrapment of Li in the coating and impair the rate
capability as well as the capacity of the battery. This
cyclable-Li loss into a coating may occur if the voltage
decreases to a level comparable to the lithiation
voltage of the coating upon discharging the battery.
Accordingly, we selected a typical Li-ion battery
discharge cutoff of �3.0 V as the upper lithiation
voltage limit for screening the coatings. In fact, the
conjugate fluoride MxF of a given oxide MxO1

2
in Eq. 2

almost always has a conversion voltage higher than
MxO1

2
(except for a few alkali/alkaline earth M).28

Fluorides are, therefore, more prone to reacting with
lithium, and accordingly, the lithiation voltage of
MxF was chosen as the fourth design attribute.

The high-throughput screening was carried out
within the four-dimensional design space of DHs-HF,
XV, XG, and lithiation voltage in a set of 81 s-, p-,
and d-block binary metal oxide coating candidates,
for which a reaction in the form of Eq. 2 can be
devised using the compounds available in the ICSD
(see Fig. 5). Materials that are experimentally
known to be effective coatings, such as Al2O3, ZrO2,
and MgO,67–74 passed through all screens, and
Al2O3 was found to provide an optimal compromise
among all four attributes. Besides this validation of
the selected design parameters, we observed that
the extent of the experimental capacity retention
provided by different coatings on the same cathode
is correlated with their HF-scavenging tendencies
and capacities, as long as the fluoride produced by
the HF-scavenging reaction is a stable solid near
room temperature. With an HT thermodynamic
analysis of 81 binary oxides, we predicted several
new, promising cathode coating candidates with
attributes similar to the well-tested coating mate-
rials such as Al2O3 and MgO (see Fig. 5).

Fig. 5. Calculated HF-scavenging tendency (–DHs-HF) of binary
metal oxides versus lithiation voltage of the corresponding metal
fluoride product layers. Dashed lines enclose the compounds that
pass the –DHs-HF and lithiation voltage screens. Point sizes are
proportional to the gravimetric HF-scavenging capacities.
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Searching for New Strengthening Precipitates
in Lightweight Mg Alloys

A critical approach to improve the efficiency of
transportation systems is to reduce the weight of the
vehicles, where a 10% reduction in the weight of a
conventional combustion automobile can improve
fuel efficiency by 6–8%.1 As one of the lightest
structural metals, Mg and Mg-based alloys offer an
attractive alternative to Al and steel vehicle parts.
However, issues with poor strength and ductility
have limited the use of Mg in automobiles. Therefore,
there has been a large effort in recent years to im-
prove the mechanical properties of Mg alloys. Rare
earth (RE) solute additions improve Mg alloy
strength and ductility through the appearance of
novel precipitates and strengthening mechanisms.75

One such precipitate, long-period stacking ordered
(LPSO) structures, is responsible for dramatic in-
creases in yield strength and ductility, 610 MPa at
15% elongation.76 However, requiring as much as 1
at.% of expensive RE elements, Mg alloys containing
LPSO structures are too costly for many industrial
applications. Therefore, we employed HT DFT and
the OQMD database to search for alternative, more
affordable LPSO-forming elements.29

LPSO structures are observed to be Mg-rich ter-
nary precipitates in Mg-XL-XS ternary systems,77–87

where XL is an element larger than Mg and XS is an
element smaller than Mg. LPSO structures have
been observed in several ternary systems, notably
Mg-Y-Zn, as summarized in Fig. 6. LPSO struc-
tures, as the name implies, are precipitates that
exhibit long-period order of atomic layer stacking
along the Mg hexagonal close-packed (hcp) c-axis.
The structures contain order of both the stacking of
atomic layers, which alternate between hcp- and

face-centered cubic (fcc)-type stacking, as well as
chemical order within the fcc-stacked layers, with
fully ordered arrangements of binary and ternary
sets of elements.88,89 18R and 14H LPSO structures
have been observed,81,90 where the number corre-
sponds to the number of atomic layers in the period
of the c-axis stacking, and the letter refers to whe-
ther the structure has rhombohedral or hexagonal
symmetry. Only recently has the crystal structure
of the LPSO precipitates been fully determined,88,89

with Mg71X8
LX6

S as the formula for the 14H LPSO
‘‘interstitial’’ structure model.91 For a DFT study of
intermetallic stability, where energy differences are
on the order of 0.01 eV/atom, an accurate crystal
structure is necessary.

To predict novel non-RE LPSO chemistries, we
first tested the ability of DFT to predict the known
LPSO-forming Mg-XL-XS ternary systems. The sta-
bilities of 85 Mg-RE-XS LPSO structures were pre-
dicted with DFT by comparing the LPSO structure
total energy to the OQMD convex hulls for every
system as generated by GCLP at the LPSO compo-
sition. The results, summarized in Fig. 6, agree
perfectly with experimental observations, where all
11 known LPSO forming ternary systems are pre-
dicted by DFT to form a stable LPSO structure.
Furthermore, 41 novel RE-containing LPSO sys-
tems are predicted as well, each representing a
ternary system awaiting experimental investigation
and confirmation of the DFT prediction. Having
proven DFT’s ability to predict LPSO stability, we
extended the search to include 11 non-RE XL ele-
ments, primarily focusing on elements larger than
Mg. As shown in Fig. 6, four non-RE elements are
shown to form stable, or nearly stable, LPSO
structures: Pa, Ca, Th, and Sr. Pa and Th are
radioactive, severely limiting their applicability. Ca
and Sr are promising, particularly the Mg-Ca-Zn
system, which is predicted to form stable LPSO
structures. Mg-Ca-Zn alloys have been explored
experimentally and LPSO structures have not been
observed.92–95 However, these alloys have different
compositions from those that have formed LPSO
structures and were not extruded in the manner
that has known to readily form LPSO structures.
Therefore, using HT DFT and the OQMD, we pre-
dict not only 41 novel RE-containing LPSO systems
but also Ca and Sr additions as potential affordable
alternatives to RE elements to form LPSO struc-
tures in Mg alloys.

Data Mining for Novel Ternary Compounds

An issue with HT DFT materials design is that the
set of materials in the database is limited to those
experimentally observed because DFT requires, as
input, the crystal structure. There are two conse-
quences of this limitation. First, the true convex hull
for unexplored systems may be incorrect. To an ex-
tent, this is addressed within the OQMD in a limited
way by the calculation of many prototype structures,

Fig. 6. DFT predicted stability of 14H-i and 18R-i LPSO structures
for Mg-XL-XS ternary systems. XS and XL elements are given along
the vertical and horizontal axes, respectively. The colors are defined
by the stability of the LPSO structure relative to the convex hull: blue
if the LPSO structure is on the convex hull, yellow if it is within
25 meV/atom above the convex hull, and red if it is more than
25 meV/atom above the convex hull. XL = RE systems are given at
top and XL

= RE systems at bottom. Experimentally observed
LPSO-forming systems are also indicated with triangles.77–87 Blue
(and possibly yellow) squares without triangles represent predictions
of alloy systems where as yet unobserved LPSO structures should
be stable.
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as discussed in the section titled ‘‘The OQMD and
DFT Accuracy’’. Second, the discovery of novel
materials is limited to the set of structures calculated
within the database. For example, a search for novel
large bandgap materials would be limited to struc-
tures observed in the ICSD and common prototypes
as opposed to truly novel complex crystal structures.
Predicting the ground-state crystal structure for
arbitrary compositions remains a heavily studied yet
elusive goal.38,96–98 The primary difficulty is that, at
a given composition, many structures (on the order of
millions) must be tested to ensure an accurate pre-
diction of the ground state. For sufficient accuracy,
DFT must be used to test the quality of potential
structures but is still far too costly for this task.

Meredig et al.30 approached this problem by
avoiding the question of structure altogether by
training a pair of heuristic and machine learning
(ML) models with OQMD data and using a combi-
nation of the models to quantitatively predict the
formation energies of arbitrary ternary composi-
tions. With such an approach, all possible ternary
compositions can be explored at a fraction of the
computational time and cost of a single DFT calcu-
lation and the most likely compositions with novel
ternary compounds can be explored with DFT
structure prediction methods or experiments. The
heuristic model employs a well-established approach
to predict A-B-C ternary formation energies by tak-
ing the composition-weighted average of those from
the A-B, A-C, and B-C binary systems.99,100 When
applied to the known OQMD data, this heuristic
greatly underestimates the DFT formation energies
but in a very systematic way. Fitting the heuristic to
the DFT calculated OQMD ternary formation ener-
gies results in a simple correction: AHF

heur-corr =
1.50DHF

heur � 0.02 eV. The ML model101 incorpo-
rates numerous decision trees to learn the behavior
of element interactions to quantitatively predict
formation energies of arbitrary compositions.
Although ML has been previously used to predict
stable crystal structures at given composi-
tions,97,102,103 the application of ML in the current
work is unique in that a quantitative, structure-
independent property prediction is produced.

The accuracy of the combined heuristic and ma-
chine learning model approach has been tested by
training the models with 4000 OQMD ternary
compound formation energies and then using the
models to predict the formation energies of �8700
others that have been already calculated within
OQMD. The agreement with DFT is very close, with
mean absolute errors about half of what is typical of
DFT compared to experiment (�0.11 eV/atom, see
the section titled ‘‘The OQMD and DFT Accuracy’’).
Having demonstrated the ability of these two mod-
els to predict the formation energy of ternary com-
pounds without the need for an input structure,
Meredig et al.30 then applied these models to predict
the formation energies of over 1.6 million ternary
compositions. These results are summarized in

Fig. 7, where the likelihood of a given pair of ele-
ments producing a stable ternary compound is
plotted, as determined by ranking the stabilities of
all the predicted compositions. Such a ranking is
made possible because the combined heuristic-ML
approach can predict the stabilities of the 1.6 mil-
lion compositions in minutes, whereas a DFT
ground state search of each composition would re-
quire tens of thousands of cpu-years. Last, the nine
most likely ternary compositions to form new com-
pounds were investigated further with DFT crystal
structure prediction to determine possible stable
ground states. Of the nine compositions, eight of
them form new stable compounds: SiYb3F5, Pa2O
(SiO6), U2O(PO4)2, S2(VF6), Pm2S3, P3(BrCs4),
Te3Y4N2, and Ba(TeS3). There are, of course, many
more potential compositions to be explored
(approximately 4500), and this approach, currently
demonstrated with formation energy, can be applied
to many other materials properties for efficient and
broad materials discovery. Thus, machine learning
and heuristic models trained on OQMD data have
been used to efficiently predict several thousand
novel stable ternary compositions.

FUTURE OUTLOOK

High-throughput density functional theory is fast
becoming a powerful tool for approaching complex
materials design problems. We have summarized
several examples where we successfully employed
the OQMD in materials discovery, data mining, and

Fig. 7. Heat map of 1.6 M candidate ternary compositions’ stability
rankings according to the combined heuristic-ML model. Brighter
colors imply higher rankings (greater stability). Each point on the
heat map corresponds to the average likelihood of stability of all
ternary compounds containing the two elements on the plot axes;
e.g., the Fe-Cl point gives the average likelihood of stability of all Fe-
Cl-X compounds. The black bars on the plot correspond to either
noble gases or several exotic heavy elements that were not con-
sidered in the survey.
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materials optimization. Progress for the creation and
use of HT DFT databases will continue along two
paths: increasing complexity and increasing under-
standing. As to the former, the ever-improving speed
and efficiency of computing processors will allow for
more accurate and more costly calculations to be
performed. Both with predictive models more accu-
rate than DFT (such as the GW approximation,104

the random phase approximation,105 and quantum
Monte Carlo106) and more elaborate DFT calcula-
tions (such as finite-temperature frozen phonon cal-
culations and larger, more complex prototype
structures), the prediction of HT DFT will grow more
accurate and be applicable to more materials prop-
erties over time. We are advancing OQMD in this
regard with the calculation of more complex and
higher-order prototype compounds, including
perovskite and heusler structures for every possible
chemistry, elastic tensor calculations of the ICSD
structures, and the thermodynamic and electronic
effects of dilute mixing in thermoelectric materials,
all of which will be openly available in updates to the
OQMD.

The second path of the future of HT DFT,
increasing understanding, is likely the more chal-
lenging of the two. With the increasing capability to
create new data, making sense of it all becomes more
difficult. Data mining techniques, such as those
demonstrated in the ‘‘Data Mining for Novel Ternary
Compounds’’ section, will become critical to effec-
tively solve materials problems with HT DFT dat-
abases such as OQMD. Our own future efforts in this
regard include complex chemical potential fits to
more accurately describe the formation energy of
transition metal oxides and halides (compared to the
simple fits employed in ‘‘The OQMD and DFT Accu-
racy’’ section). We are also developing additional
machine learning models for new types of materials
properties, such as bandgap, magnetic moment, and
vacancy formation energy. The breadth of HT DFT
calculations is also a challenge because tools such as
GCLP are only efficient for investigating phase sta-
bility in specific, small regions of composition space.
We are building tools to efficiently explore and ana-
lyze ground state thermodynamics for broad sear-
ches of composition space (e.g., 10-component phase
diagrams). With improved DFT calculations and
data analysis tools, HT DFT will become an even
more critical tool in materials science.
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