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A public database of thermoelectric materials and system-
identified material representation for data-driven discovery
Gyoung S. Na 1✉ and Hyunju Chang 1✉

Thermoelectric materials have received much attention as energy harvesting devices and power generators. However,
discovering novel high-performance thermoelectric materials is challenging due to the structural diversity and complexity of the
thermoelectric materials containing alloys and dopants. For the efficient data-driven discovery of novel thermoelectric materials,
we constructed a public dataset that contains experimentally synthesized thermoelectric materials and their experimental
thermoelectric properties. For the collected dataset, we were able to construct prediction models that achieved R2-scores greater
than 0.9 in the regression problems to predict the experimentally measured thermoelectric properties from the chemical
compositions of the materials. Furthermore, we devised a material descriptor for the chemical compositions of the materials to
improve the extrapolation capabilities of machine learning methods. Based on transfer learning with the proposed material
descriptor, we significantly improved the R2-score from 0.13 to 0.71 in predicting experimental ZTs of the materials from
completely unexplored material groups.
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INTRODUCTION
Thermoelectric material is a class of the materials that convert
heat energy to electrical energy based on the Seebeck and Peltier
effects1. These thermoelectric materials have been widely applied
to scientific applications, such as energy harvesting2, thermo-
electric cooling3, and thermopower generators4. Recently, thermo-
electric materials have also received much attention as the
materials for renewable energy5. To discover high-performance
thermoelectric materials, various materials with the promising
thermoelectric properties have been studied, such as such as tine
selenide6, silicon-germanium7, and lead telluride8. In particular,
various alloy and doped materials have been extensively studied
around the promising host materials to improve the thermo-
electric performances6,9,10.
In physical science, density functional theory (DFT)11 have been

widely applied to estimate and interpret the relationships
between the electronic structures and their physical properties
of the materials, such as solar cell materials12, 2d materials13, and
electrocatalysis14. However, although DFT achieved numerous
successes as a generally applicable method to analyze the
crystalline systems, the applicability of DFT is still limited to the
materials of small unit cells due to exponential computational
costs in huge unit cells15,16. For this reason, calculating the
thermoelectric properties of the doped materials remains a
challenging problem in physical science.
In a different direction from the conventional approach,

machine learning has been studied to efficiently approximate
the relationships between the materials and their physical
properties17,18. Several machine learning methods outper-
formed the conventional calculation- and simulation-based
methods in predicting the physical properties of the materi-
als19,20. In particular, graph neural networks (GNNs)21 have
shown remarkable prediction capabilities in various regression
tasks on crystal structures19,22. The great successes of GNNs in
materials science came from using a crystal graph representa-
tion that preserves structural information of the materials as

well as their atomic attributes. However, the general applic-
ability of GNNs in real-world applications is significantly limited
because the crystal structures of the doped materials are not
available in most cases.
In materials science, several machine learning methods that

predict the physical properties of the materials from their
chemical compositions have been proposed to extend the general
applicability of machine learning to the applications where the
crystal structures are not available. Representation learning from
stoichiometry (Roost) tried to learn latent embeddings from the
chemical compositions of the materials by representing the
chemical compositions as an elemental graph23. In the experi-
mental evaluations, Roost achieved state-of-the-art accuracies in
predicting band gaps of inorganic crystals from their chemical
compositions. However, its applicability is still limited to the
pristine materials because the elemental graph is defined only for
the pristine materials. DopNet was proposed to predict the
physical properties of the alloy and doped materials from their
chemical compositions based on a material space embedding
approach18. By separately representing the host materials and the
dopants, DopNet was able to learn more informative and latent
features of the doped materials and consequently achieved state-
of-the-art accuracies in predicting thermoelectric properties of the
doped materials. However, the thermoelectric materials have
different and complex thermodynamics for each material group24,
i.e., a simple splitting of the host materials and the dopants cannot
fully handle the complexities of the regression problems on the
thermoelectric materials. In addition to DopNet, various machine
learning approaches have been studied for thermoelectric
materials. Neural networks were applied to determine the
thermophysical properties of amino acid based ionic liquids25.
Moreover, several ensemble methods were used to predict
thermoelectric properties of the materials26. However, to the best
of our knowledge, there is no public database and material
descriptor for data-driven extrapolation to discover novel thermo-
electric materials.
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To accelerate the data-driven discovery of the thermoelectric
materials, we constructed a public materials dataset containing
5205 experimental observations containing the chemical compo-
sitions of the experimentally synthesized thermoelectric materials
(ESTM) and their experimental thermoelectric properties. We
named the collected dataset as ESTM dataset. The ESTM dataset
covers 880 unique thermoelectric materials and provides five
experimentally measured thermoelectric properties: Seebeck
coefficient, electrical conductivity, thermal conductivity, power
factor, and figure of merit (ZT). In addition, we predicted the
thermoelectric properties of the collected materials from their
chemical compositions to validate the usefulness of the ESTM
dataset in machine learning. In machine learning on the ESTM
dataset, we achieved R2-scores27 greater than 0.9 in predicting five
thermoelectric properties of the materials, and our prediction
model showed a mean absolute error (MAE) less than 0.06 in
predicting ZTs of the materials.
In addition to the public dataset, we devised a representation

method for the alloy and doped materials, called system-
identified material descriptor (SIMD), to accurately predict the
target physical properties of the thermoelectric materials from
their chemical compositions. SIMD makes a material cluster by
collecting similar materials based on the chemical and physical
attributes of the materials. Then, SIMD characterizes the relation-
ships between the clustered materials and their target properties
for each material cluster based on the least-square method28 to
solve the system of equations. By SIMD, each material cluster is
summarized as a vector that can be used to the input data of the
machine learning algorithms.
Based on transfer learning with SIMD, we were able to improve

R2-score from 0.13 to 0.71 in an extrapolation problem to predict
ZTs of the materials from unexplored material groups, which is a
key problem for the data-driven discovery of high-performance
thermoelectric materials. We conducted a data-driven search in the
materials space to evaluate the usefulness of the ESTM dataset and
SIMD in real-world applications for material discovery. In the
experiments of the materials discovery, a machine learning model
based on SIMD showed a screening accuracy of 0.61 measured by
F1-score29 as shown in Fig. 4 of the “Results and discussion” section,
even though the high-throughput screening was conducted on the
thermoelectric materials from completely unexplored material
systems. Furthermore, we conducted a data-driven search based
on SIMD to discover high-ZT materials under the temperature
constraints, and the machine learning model with SIMD reduced
the false positive by 50% for all search tasks, as shown in Fig. 5. The
ESTM dataset and all resources of SIMD with the search results are
publicly available at https://github.com/KRICT-DATA/SIMD. The
contents of this paper can be summarized as:

● We constructed a public dataset containing experimentally
validated thermoelectric materials and their experimental

thermoelectric properties.
● For machine learning extrapolation, we devised a material

descriptor that can incorporate information about similar
materials beyond a single material.

● The proposed descriptor significantly reduced the number of
false positives in the high-throughput screening to discover
novel thermoelectric materials.

RESULTS AND DISCUSSION
A public dataset of experimentally synthesized thermoelectric
materials
For data-driven discovery of the thermoelectric materials, we
performed the literature search to collected the chemical
compositions and the experimentally measured thermoelectric
properties of the materials. We collected 5205 experimental
observations that are uniquely defined by a pair of the chemical
composition and the measuring temperature. Each observation
contains five target thermoelectric properties: Seebeck coefficient,
electrical conductivity, thermal conductivity, power factor, and ZT.
Table 1 describes the data row of the ESTM dataset. The first
column of chemical composition presents the chemical composi-
tion of the thermolectric materials, and the second column is the
measuring temperature of the thermoelectric properties. The first
column presents the chemical composition of the collected
thermoelectric materials. For machine learning, the chemical
composition should be converted to the numerical data. The
second column is the measuring temperature of the thermoelectric
properties. The last column is DOI of the source literature of the
collected experimental observation. The remaining columns are the
thermoelectric properties that were experimentally collected or
theoretically calculated from the experimental observations.
The ESTM covers 880 unique thermoelectric materials

containing 65 elements from Li to Bi. The elemental distribution
of the ESTM dataset is visualized in Supplementary Information
(SI). The most common elements in the ESTM dataset were Se,
Sb, and Te, which have been widely studied for high-
performance thermoelectric materials30,31. In addition, the ESTM
dataset contains popular and promising thermoelectric materi-
als and their variants, such as lead tellurides (PbTe), bismuth
tellurides (Bi2Te3), and tin selenide (SnSe). The maximum ZTs of
the collected thermoelectric materials at high temperature
(≥700 K) and near room temperature (≈300 K) were 2.16 and
1.17, respectively.

Machine learning interpolation for predicting thermoelectric
properties
For the collected ETML dataset, we trained machine learning
models to predict the thermoelectric properties from the chemical

Table 1. Description of the collected features in the ESTM dataset.

Name Type Unit Range Mean Description

Chemical composition String N/A N/A N/A Chemical composition of the thermoelectric material

Temperature Numeric K [10, 1275] 539.28 ± 192.42 Temperature in measuring the thermoelectric properties

Seebeck coefficient Numeric μV/K [−1174, 1052.4] 73.18 ± 208.92 Experimentally measured Seebeck coefficient

Electrical conductivity Numeric S/m (0, 9.47E+ 07) 1.10E+ 05 ± 1.47E+ 06 Experimentally measured electrical conductivity

Thermal conductivity Numeric W/mK [0.07, 77.16] 2.25 ± 3.29 Experimentally measured thermal conductivity

Power factor Numeric W/mK2 (0, 7.61E− 03) 9.92E− 04 ± 1.12E− 03 Experimentally measured or theoretically calculated power factor

ZT Numeric N/A (0, 2.28) 0.35 ± 0.35 Experimentally measured or theoretically calculated ZT

DOI String N/A N/A N/A Source literature of the collected data row

Each data row of the thermoelectric materials is represented as a vector containing string and numerical values. N/A means that this value is not available.
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compositions of the materials. We predicted four experimentally
measured thermoelectric properties: Seebeck coefficient, electrical
conductivity, thermal conductivity, and ZT. In the experiment, we
evaluated six different machine learning methods as follows:

● Ridge regression (RidgeReg)32: it is a baseline linear regression
model with weight regularization by the L2-norm.

● K-nearest neighbor regression (KNNR)33: KNNR predicts the
target value of the input data by interpolating the target
values associated with K nearest neighbor data in the training
dataset.

● Support vector regression (SVR)34: SVR is a variant of support
vector machine for the regression problems. It employs kernel
methods to capture the nonlinear relationships between the
input and the target data.

● Gaussian process regression (GPR)35: GPR is a regression
model of a Gaussian process. GPR assumes that the input
variables are multivariate Gaussian random variables, and they
are drawn from a multivariate normal distribution.

● Fully-connected neural network (FCNN)36: FCNN is a feedfor-
ward neural network to approximate the relationships
between the vector-shaped inputs and the scalar targets.
We stacked two hidden layers between the input and the
output layers of FCNN to extract latent and nonlinear
information from the input data.

● XGB37: XGB is an ensemble method that integrates multiple
week prediction models to improve the prediction and
generalization capabilities. XGB employs a gradient boosting
method based on decision trees. XGB has shown state-of-
the-art prediction accuracies in many scientific fields, such as
organic chemistry and material science.

In the experiments, we used k-fold cross-validation method to
train and evaluate the machine learning prediction models. We
divided the entire ESTM dataset into three non-duplicated
subsets (3-folds). In the training process, two folds of the dataset

containing 3435 observations were used for training of the
prediction models, and the remaining subset containing 1770
observations was used for evaluating the generalization
capabilities of the trained prediction models. For each machine
learning method, we repeated the training and evaluation
processes until were subsets are used for the evaluation. We
used the sparse encoding to convert the chemical compositions
into machine-readable numerical vectors. The encoding process
is described in Section 3 of Supplementary Information. For
electrical and thermal conductivity, we applied the logarithm to
adjust their high variances.
Table 2 presents the means and the standard deviations of

the measured MAEs for the six machine learning methods in the
interpolation problems that predict the thermoelectric proper-
ties on the ESTM dataset. For the comparison in a normalized
metric, the mean and the standard deviations of the measured
R2-scores are reported together in the table. In the evaluation,
RidgeReg, SVR, and GPR failed to predict the thermoelectric
properties for the input chemical compositions and measuring
temperatures, and their R2-scores were less than 0.5 for all
prediction tasks. Although KNNR and FCNN showed relatively
high R2-scores over RidgeReg, SVR, and GPR, their prediction
capabilities were still limited. By contrast, XGB achieved R2-
scores greater than 0.9 for all prediction tasks. In addition, MAEs
of XGB in predicting Seebeck coefficient, electrical conductivity,
thermal conductivity, and ZT were 21.10 ± 0.48, 0.28 ± 0.02,
0.09 ± 0.01, and 0.06 ± 0.01, respectively. Figure 1 shows the
prediction results of XGB, and the thermoelectric properties of
the materials in the ESTM dataset were accurately predicted
from the chemical compositions and the measuring tempera-
ture. The prediction results of XGB in predicting ZT show
the availability of our ESTM dataset for rapid estimation of the
experimentally measured thermoelectric performance of the
materials in real-world applications.

Table 2. MAEs and R2-scores of the six machine learning methods in the interpolation problems to predict the thermoelectric properties on the
ESTM dataset.

Target property (unit) Evaluation metric RidgeReg KNNR SVR GPR FCNN XGB

Seebeck coefficient (μV/K) MAE 128.57 ± 0.31 101.55 ± 3.31 N/A N/A 62.41 ± 2.40 21.10 ± 0.48

R2-score 0.31 ± 0.01 0.47 ± 0.04 N/A N/A 0.74 ± 0.02 0.96 ± 0.01

Electrical conductivity (S/m) MAE 1.38 ± 0.01 1.16 ± 0.03 N/A N/A 0.81 ± 0.03 0.28 ± 0.02

R2-score 0.33 ± 0.02 0.42 ± 0.04 N/A N/A 0.70 ± 0.03 0.92 ± 0.01

Thermal conductivity (W/mK) MAE 0.50 ± 0.01 0.43 ± 0.01 0.70 ± 0.01 N/A 0.24 ± 0.01 0.09 ± 0.01

R2-score 0.46 ± 0.01 0.56 ± 0.02 0.06 ± 0.02 N/A 0.84 ± 0.02 0.97 ± 0.01

ZT MAE 0.21 ± 0.01 0.16 ± 0.01 0.23 ± 0.01 0.19 ± 0.01 0.12 ± 0.01 0.06 ± 0.01

R2-score 0.35 ± 0.01 0.52 ± 0.02 0.17 ± 0.02 0.41 ± 0.03 0.68 ± 0.03 0.91 ± 0.01

The mean and the standard deviation of the evaluation metrics are presented for each machine learning method. The bold font highlights the best prediction
performance for each target property. Note that N/A means the negative R2-score that indicates the failure of the machine learning method in predicting the
thermoelectric property of the materials.
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Fig. 1 Interpolation results of XGB that was the best prediction model in the interpolation problems to predict the thermoelectric
properties of the 5205 observations in the ESTM dataset. Each abbreviation in the axis label means: S.C. Seebeck coefficient, E.C. electrical
conductivity, and T.C. thermal conductivity.
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System-identified material descriptor
Machine learning methods showed remarkable prediction
capabilities in the interpolation problems17,19,22, and we were
also able to observe the outstanding interpolation capabilities of
machine learning methods on the ESTM dataset as shown in
Fig. 1. However, it is not sufficient for the data-driven discovery
of novel thermoelectric materials because our interest is in the
extrapolation that predicts the thermoelectric properties of
unexplored material systems. In other words, we should evaluate
the prediction capabilities of machine learning methods before
using them for the data-driven material discovery. For this
reason, we evaluated the prediction capabilities of FCNN and
XGB in the extrapolation problems on the ESTM dataset by
randomly splitting the dataset based on the material groups
rather than each material, i.e., the materials in the same material
group were entirely removed in the training dataset. In the
evaluation of the extrapolation, FCNN and XGB failed to predict
ZTs of the materials from unknown material groups, and their
R2-scores were just −0.15 and 0.13, respectively. This failure is
natural because conventional machine learning methods are not
effective in the extrapolation problems38,39.
To improve the extrapolation capabilities of the machine

learning methods, we devised a material representation called
SIMD that extracts system-level input features for each material
group. The overall process of SIMD consists of three steps: (1)
material cluster generation, (2) material cluster characterization,
and (3) system-identified feature generation. Figure 2 illustrates
the overall process of SIMD to generate the system-conditioned
material representations for input tabular data of the materials.
We will formally describe each step of SIMD to generate the
system-conditioned material representations in the following
subsections.

Material cluster generation. The purpose of material cluster
generation is to construct the material clusters that cover alloy
and doped materials derived from the same pristine materials. To
this end, we define a cluster identifier that uniquely represent the
material cluster. Formally, the cluster identifier for an input
chemical composition s is defined as:

idðsÞ ¼ fðe; roundðreÞÞje 2 s and re > 0:5g; (1)

where e is the symbol of the element in s, re is the ratio of the
element represented by e, and round() is the mathematical
rounding operator to convert floating point values to integer
values. For example, the input compositions of SnS1−xSnx
(x= 0.09, 0.06, 0.12) and Ta1−xTixFeSb (x= 0.08, 0.12) generate
the material clusters identified by SnS and TaFeSb, respectively.
Note that the input engineering and measuring conditions of the
material data are ignored in the process of the material clusters
construction in order to cluster the input materials based on the

chemical and physical attributes of the materials. After generating
the material clusters, the input materials are clustered into the
generated material clusters based on the compositions of the
input materials. For example, the input materials of the composi-
tions SnS0.91Se0.09, SnS0.94Se0.06, and SnS0.88Se0.12 are clustered
into the material cluster of SnS regardless of their alloy and doping
elements, as shown in Fig. 2. In the next step of the material
cluster generation, the latent vector for each constructed material
cluster is calculated to describe the material cluster as a machine-
readable vector-shaped representation.

Material cluster characterization. In this step, we generate a
vector representation of the constructed material clusters based
on their cluster identifiers. Through this process, we can convert
the material clusters described by chemical compositions into the
vector-shaped representations that can be used for the input of
the machine learning methods. Specifically, we extract two latent
information called system vector and target statistics vector to
generate the vector-shaped representations of the material
clusters. The system vector for a material cluster represents a
projection function from the input material space to the target
space for the set of the materials in the material cluster, i.e., the
system vector describes the relationships between the materials
and the target properties in the local material space defined by
the material cluster. The target statistics vector is defined by the
mean, standard deviation, minimum, and maximum of the target
properties of the materials in the material cluster. It briefly
presents the distributions of the target properties in the material
clusters, as shown in Fig. 2.
To calculate the system vector of the material cluster u, we

represent the relationship between the input materials and the
target properties in the material cluster as a mathematical system
of material-wise equations as:

x11 ¼ x1M c11 ¼ c1L
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where xn= [xn1xn2,… , xnM] is a M-dimensional atomic feature
vector calculated from the chemical composition of the nth
material in the material cluster, cn= [cn1, cn2,… , cnL] is a L-
dimensional condition vector of the nth material, yn is the target
property of the nth material, and d=M+ L is the dimensionality
of the system vector w= [w1,w2,… ,wd]. Note that ∣u∣ is the size
of the material cluster which means the number of the materials in
the material cluster u. The condition vector can be defined by the
synthesis conditions and measurement factors such as tempera-
ture, pressure, and cooling time. In this equation system, the
system vector w is the solution of the system, and it can be
efficiently calculated by least-square method28 in linear algebra. In
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Fig. 2 The overall process of SIMD to generate the material representations for an input tabular data of the materials. SIMD calculates the
materials representations through the three steps. Step 1: the input materials are clustered based on their compositions. Step 2: the system
vectors and target statistics are calculated for each material cluster. Step 3: the KNN method allocates the material cluster for each input
material, and the representation generator concatenates the system vectors and the target statistics to the input features of the input
material.
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the implementation of SIMD, the atomic feature vector xn can be
defined in various ways to transform the chemical composition of
the material into the feature vector. We used a sparse encoding
for the atomic feature vector xn, and the formal description of the
atomic feature vector is given in the method section.
The target statistics vector v of the material cluster u is defined

as a 4-dimensional vector of the mean, standard deviation,
minimum, and maximum of the target properties of the materials
in the material cluster. The target statistics vector is formally
defined as:

v ¼ ½y; yσ; ymin; ymax�; (3)

where y ¼ 1
juj
Pjuj

i¼1 yi is the mean of target properties, and yσ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPjuj
i¼1 ðyi � yÞ2=juj

q
is the standard deviation of the target

properties. Note that ymin and ymax mean the minimum and
maximum values among the target values {y1, y2,… , y∣u∣}, respec-
tively. As a result, the material clusters are represented as the
(d+ 4)-dimensional concatenated vector of the system and target
statistics vectors.

System-identified feature generation. The purpose of system-
identified feature generation is to convert the chemical composi-
tions of the materials based on their physical attributes and the
constructed material clusters. First, we determine the material
clusters of the input chemical compositions. To this end, we define
an anchor space where the material clusters are defined as anchor
vectors corresponding to their cluster identifiers. The anchor
vector is defined as an attribute vector based on the chemical
attributes of the cluster identifiers and the chemical compositions.
The implementation details of the anchor vector are provided in
the method section. Then, the KNN method selects K nearest
material clusters for the input chemical compositions in the
anchor space. For the selected K nearest material clusters, the
system and target statistics vectors are combined by a distance-
weighted sum as:

wðKÞ
s ¼

X
u2N s

ϕu;sw
ðuÞ; (4)

vðKÞs ¼
X
u2N s

ϕu;sv
ðuÞ; (5)

where ϕu;s ¼ qðau; asÞ=
P

h2N s
qðah; asÞ is a distance-based weight

for the input chemical composition s and a set of its nearest
neighbor material cluster N s, and q(au, as)= 1/r(au, as) is the
inverse distance for a distance function r. Finally, the system-
identified material representation zs of the input chemical
composition s is calculated as:

zs ¼ xs � cs �wðKÞ
s � vðKÞs ; (6)

where ⊕ is the vector concatenation operator. Note that xs and cs
are the atomic feature vector and the input conditions of the input
chemical composition s. In machine learning with SIMD, we use
the system-identified material representation zs rather than the
original input xs and cs.

Transfer learning based on SIMD for machine learning
extrapolation
The main feature of SIMD is to generate the vector-shaped
representations of the material groups, and it can be used to
summarize the large materials datasets. From this perspective, we
applied SIMD to transfer learning that aims to transfer knowledge
gained from source datasets in solving different but related
problems. For the transfer learning on the thermoelectric
materials, we used a large source dataset called Starry dataset40

that contains 215,683 observations of the thermoelectric materials

and their ZT. However, although the Starry dataset covers
extensive thermoelectric materials and their thermoelectric
properties, it is not suitable for machine learning due to the
following two reasons. (1) The experimentally collected and
theoretically calculated thermoelectric materials and their proper-
ties are mixed without source labels in the Starry dataset, which
makes the prediction models unreliable. (2) The parsing errors in
the collected thermoelectric properties are inevitable in the Starry
dataset because the data was automatically collected by a parsing
algorithm. For this reason, we used Starry dataset as a source
dataset for the transfer learning rather than the training dataset.
Figure 3 illustrates the overall process of SIMD to generate the

system-identified features in the transfer learning environments.
The transfer learning based on SIMD is performed through the
following four steps.

(1) SIMD constructs the material clusters and the system-
identified features on the merged dataset of the source and
training datasets.

(2) The KNN method of SIMD determines K nearest material
clusters of the input chemical compositions among the
material clusters constructed on the source and training
datasets.

(3) SIMD transforms the original training dataset Dtrain ¼
fðs1; c1; y1Þ; ðs2; c2; y2Þ; ¼ ; ðsN; cN; yNÞg into Ztrain ¼
fðz1; y1Þ; ðz2; y2Þ; ¼ ; zN; yNð g based on Eq. (6), where N ¼
jDtrainj is the number of observations in the training dataset.

(4) The prediction model to predict the target property yn is
trained on the transformed training dataset Ztrain.

As a result, our transfer learning problem based on SIMD is
formally defined as an optimization problem as:

θ� ¼ argmin
θ

XN
n¼1

Lðyn; f ðSIMDðsn; cn;Dtrain;DsÞ; θÞÞ; (7)

where L is a loss function to measure the prediction errors, f( ⋅ ; θ)
is a prediction model parameterized by θ, SIMD() is a function to
generate zn for the input (sn, cn), and Ds is a source dataset of
transfer learning. In the following subsections, we will evaluate the
effectiveness of SIMD in transfer learning based extrapolation to
predict thermoelectric efficiency of unknown materials.

SIMD-based transfer learning to extrapolate ZTs of unknown
material groups
In this experiment, we conducted machine learning extrapolation
to predict the target properties of the materials from unknown

SnS
SnSe

SnS . Se .

Cu SnS

AgTe

NN
method

Material system
database

…
…
…

…

System
vectors

…
…
…

…

Target
statistics

Material representation 
generator

Anchor space in
source dataset

Fig. 3 The overall process of SIMD to generate the system-
identified features of the input chemical composition in the
transfer learning environments. SIMD determines the nearest
material systems of the input chemical composition in the anchor
space and generates the material representation of the input
chemical composition based on the selected material systems. In
this example, Cu2SnS3, SnSe, and SnS are selected as the nearest
material systems of the input SnS0.91Se0.09. Then, the material
representation of SnS0.91Se0.09 is generated with the system vectors
and target statistics of the selected material systems, which are
stored in the material systems database of SIMD.
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material groups. It is essential for material discovery based on
machine learning, as we should explore unknown material groups
to discover novel materials. To make an extrapolation problem on
the ESTM dataset, we divided the entire dataset into the training
and test datasets based on the material groups, i.e., none of the
materials in the test material groups have never been included in
the training dataset. For example, if a pristine material SnS is
selected as a test material group, all alloy and doped materials
derived from SnS (e.g., SnS0.91Se0.09 and SnS0.94Se0.06) are entirely
removed in the training dataset. That is, the prediction models
should predict the target properties of the materials that has
never been seen in the training dataset, which is called
extrapolation problem in machine learning.
To validate the effectiveness of SIMD, we generated four

prediction models based on transfer learning approaches as:

● FCNNf: FCNN is pretrained on the source Starry dataset. Then,
FCNN is re-trained on the training dataset of the ESTM dataset.

● FCNNd: FCNN is trained on the merged training dataset of the
source Starry dataset and the training dataset of the ESTM
dataset.

● XGBd: XGB is trained on the merged training dataset.
● SXGBd: XGB is trained on the merged training dataset

transformed by SIMD.

After the training, the extrapolation capabilities of these four
transfer learning methods were evaluated on the test dataset Dtest

that contains completely unseen materials.
Table 3 summarizes the measured R2-scores of the four transfer

learning methods in an extrapolation problem that predicts ZTs of
the materials in unknown material groups. As shown in the results,
the extrapolation capabilities of all machine learning methods
were improved by employing the transfer learning approaches
based on the Starry dataset. Specifically, FCNNd and XGBd showed
R2-scores close to 0.5. However, SXGBd showed further improve-
ment over the conventional XGBd and achieved a R2-score of
0.7.The improvement of SXGBd in R2-score was 0.58 and 0.19
compared to R2-scores of the baseline XGB model and the transfer
learning based XGBd model, respectively. The R2-score of SXGBd
around 0.70 in the extrapolation environment means that SXGBd
roughly predicted the relationships between the test materials
and their experimental ZTs, even for the test materials that have
never been seen in the training dataset. In the following
experiments, we will perform high-throughput screening based
on SXGBd to demonstrate the effectiveness of SIMD in real-world
applications for discovering novel thermoelectric materials.

High-throughput screening for discovering high-performance
thermoelectric materials
The thermoelectric performance defined by ZT essentially
determines the efficiency of power generation and energy
harvesting in various real-world applications of the thermo-
electric materials2,3,5. To discover novel materials of high ZTs,
many experimental analyses and demonstrations have been

conducted for various candidate material groups9,10,24. To
validate the effectiveness of SIMD in material discovery, we
conducted the high-throughput screening based on SXGBd for
the thermoelectric materials that have never been provided in
the training dataset of SXGBd.
We used SXGBd to predict the experimental ZTs of the materials

from their chemical compositions and the given measuring
temperatures. The high-throughput screening for discovering
high-ZT materials can be defined as a binary classification
problem determining whether ZTs of the given materials will
actually be greater than the threshold ZT. In this classification
problem, the true and false labels indicate whether ZTs of the
materials are greater than the threshold ZT. For the high-
throughput screening results, we calculated the screening
accuracy using F1-score29 that can comprehensively evaluate
the binary classification accuracy based on true positive, false
positive, and false negative. Figure 4 shows the confusion
matrices of the binary classification results of XGBd and SXGBd
in the high-throughput screening for discovering the materials
with ZTs of 1.5 or more. SXGBd achieved an F1-score of 0.61, and
the improvement by SXGBd in F1-score was 0.12 compared to the
F1-score of XGBd. In particular, SXGBd significantly reduced the
number of false positives from 21 to 6. In the high-throughput
screening for material discovery, a low false positive is crucial
because it guarantees a high probability that the suggested
materials will actually have desired properties. In other words, the
low false positive can prevent the waste of time and labor to
synthesize the materials incorrectly suggested by the prediction
models. Quantitatively, the materials suggested by XGBd were
actually the high-ZT materials with a probability of 50.00%
(=100 × 21/42), whereas the materials suggested by SXGBd were
actually the high-ZT materials with a probability of 78.57%
(=100 × 22/28). These high-throughput screening results of SXGBd
show the potential usability of SIMD in the data-driven discovery
of high-performance novel thermoelectric materials.

High-throughput screening under temperature constraints
Since the applications of the thermoelectric materials are mainly
categorized by the target temperatures, it is crucial to discover
high-performance thermoelectric materials for a given tempera-
ture9,10,24. In this experiment, we evaluated the screening
accuracies of XGBd and SXGBd in a high-throughput screening
for discovering high-ZT materials under the given temperature
ranges. We performed the high-throughput screening for three
target ranges of the temperatures in kelvin: (1) near room
temperature (290 ≤ T ≤ 310), (2) common thermoelectric tempera-
ture (300 ≤ T ≤ 600), and (3) high temperature (T ≥ 600). For the
three target temperature ranges, we searched the materials of ZTs
greater than or equal to 0.5, 0.8, and 1.5, respectively.

Table 3. R2-scores of machine learning methods trained by transfer
learning approaches in an extrapolation problem that predicts ZTs for
the thermoelectric materials in unknown material groups.

Without transfer learning With transfer learning

Method R2-score Method R2-score

FCNN N/A FCNNf 0.22 ± 0.07

FCNNd 0.48 ± 0.10

XGB 0.13 ± 0.07 XGBd 0.52 ± 0.09

SXGBd 0.71 ± 0.05

22 22

6 5,155

T
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Confusion matrix of SXGB
(F1-score: 0.61)

Predicted label
T F

21 23

21 5,140

T

FTr
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be

l

Confusion matrix of XGB
(F1-score: 0.49)

Predicted label
T F

Fig. 4 Confusion matrices of XGBd and SXGBd in the high-
throughput screening to discover high-ZT (≥1.5) thermoelectric
materials from unknown material groups. The true label indicates
whether the experimentally measured ZT of the material is actually
1.5 or more. On the other hand, the predicted label indicates
whether ZT of the material is predicted to be 1.5 or more. Two
abbreviations T and F mean the true and false labels, respectively.
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Figure 5 shows the confusion matrices of the classification
results based on the predicted ZTs of XGBd and SXGBd in the high-
throughput screening for discovering high-ZT materials under the
temperature constraints. As shown in the confusion matrices,
SXGBd showed higher F1-scores than XGBd for all high-throughput
screening tasks. The false positive of XGBd was 65.22% in the high-
throughput screening task in Fig. 5a. By contrast, the false positive
of SXGBd was 25%. In addition, the false positive of XGBd was
41.04% in the tasks of Fig. 5b, but the false positive of SXGBd was
21.77%. Also, the false positives of XGBd and SGBd were 38.24%
and 21.43% in the task of Fig. 5c, respectively. That is, we were
able to reduce the number of false positive samples by more than
50% for all high-throughput screening tasks by applying the
proposed SIMD. As we emphasized before, the low false positive is
crucial in machine learning based high-throughput screening
because it can prevent the waste of time and labor to synthesize
the materials incorrectly suggested by the prediction models.

Exploration of virtual dopant spaces for discovering high-ZT
materials
As shown in the experimental results, SXGBd achieved R2-score
of 0.71 in the extrapolation problem of ZT prediction and
showed reliable results in high-throughput screening of high-ZT
materials. One of the most beneficial advantages of the
extrapolation models is that we can efficiently explore unknown
material spaces to discover novel materials without time-
consuming experiments and simulations. In this section, we
explored virtual dopant spaces using SXGBd to discover
promising dopants for target given host materials. To this end,
we generated the virtual dopant spaces for given host materials

by concatenating the chemical compositions of the host
materials and the candidate dopant elements. For example, we
generated candidate materials Cu0.001SnSe, Cu0.002SnSe, … ,
Cu0.1SnSe for a given host material SnSe and a target dopant Cu
and. Then, we predicted ZTs of the materials for the target
measuring temperatures.
We conducted the virtual screening of the dopant space to

discover novel dopants for a host material Bi0.5Sb1.5Te3 that was
showed promising thermoelectric properties at low temperature.
We generated virtual materials by concatenating Bi0.5Sb1.5Te3 and
the elements from H to Fm with the doping concentrations in
{0.001, 0.002, … , 0.1}. In other words, we predicted ZTs of 104

candidate virtual materials for the host material Bi0.5Sb1.5Te3. Then,
we predicted ZTs of the generated materials at the temperatures
in {300 K, 350 K, … , 800 K}. After that, we selected top 10%
materials based on their predicted ZTs at 300 K.
In the exploration results, most selected materials contained

the dopants of Ti, Fe, Ga, Se, and Ag, and we were able to
crosscheck the improved thermoelectric performances by Ag and
Ti in experiments41–43. We plotted ZTs of Ag- and Ti-doped
Bi0.5Sb1.5Te3 for different measuring temperatures, as shown in
Fig. 6. The red square and blue triangle lines present the predicted
ZTs of the materials that were experimentally reported to have
the highest and lowest ZTs in the Ag- and Ti-doped Bi0.5Sb1.5Te3,
respectively. The gray dotted lines present the experimentally
measured ZTs of the Ag- and Ti-doped Bi0.5Sb1.5Te3. As shown in
the results, SXGBd accurately predicted the promising dopants Ag
and Ti that were experimentally demonstrated to improve the
thermoelectric performance of Bi0.5Sb1.5Te3. Moreover, SXGBd
captured the tendency of ZTs of the doped materials for different
measuring temperatures.
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Fig. 5 Confusion matrices of XGBd and SXGBd in the high-throughput screening to discover high-ZT thermoelectric materials for given
temperature ranges. a Screening results at near-room temperature (290 ≤ T ≤ 310). b Screening results at common thermoelectric
temperature (300 ≤ T ≤ 600). c Screening results at high temperature (600 ≤ T).
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Fig. 6 Experimentally measured and predicted ZTs of Ag- and Ti-doped Bi0.5Sb1.5Te3 materials. a Predicted ZTs of Ag-doped Bi0.5Sb1.5Te3.
b Predicted ZTs of Ti-doped Bi0.5Sb1.5Te3. The gray dotted lines indicate the experimentally measured ZTs of the materials presented with the
same marker.
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Extrapolation accuracy for different number of nearest
material clusters
The number of nearest material clusters (defined as K) is an
important hyper-parameter of SIMD, as shown in Eqs. (4) and (5).
In this section, we evaluated the extrapolation capabilities of
SIMD for the changes in the values of K. We measured R2-scores
of SXGBd in predicting ZTs in the extrapolation problems for
different values of K in {1, 2, … , 2048}, as shown in Fig. 7a. Note
that the number of material clusters in the training dataset was
2201 (~2048). As shown in the results, SXGBd showed the
consistent R2 scores for the changes in the values of K. We also
measured the effectiveness of K in the R2-scores of SXGBd for
different data sizes. Figure 7b shows the measured R2-scores,
and m means the number of material clusters in the training
dataset. The small value of m indicates the small training
dataset. In the experiment, SXGBd showed the highest R2-scores
for K of 4 and 8 in the small training datasets containing 128 and
256 material systems (red and blue lines, respectively), which
these small training dataset may not contain a material cluster
that covers the input material. For these small training datasets,
the values of K larger than 1 were helpful because SIMD was able
to generate material descriptors by collecting the information
from similar material clusters. By contrast, SXGBd achieved the
best R2-score for K of 1 and 2 for more large dataset containing
512 material systems (indigo line). We can interpret this results
that K= 1 was sufficient because various material systems
covering the input materials were contained in the relatively
large training dataset. Therefore, hyper-parameter selection of K
is not a big problem in the implementation of SIMD if we have a
large training dataset. However, when the training dataset is
small, a sufficiently large K will help to improve the extrapolation
ability of SIMD.

SIMD for system-conditioned prediction
In the high-throughput screening to discover novel thermoelectric
materials, SIMD reduced the false positive of the prediction
models by about 50% compared to the conventional methods. To
reveal physical or chemical insights from the high-throughput
screening results, we conducted a case study for the Mg1−xLix-
Ge0.9Si0.1 system that generated most false positive samples in the
baseline XGBd. Figure 8 illustrates the distribution of the thermo-
electric materials around the Mg1−xLixGe0.9Si0.1 system in the
chemical space based on the sparse encoding of the chemical

compositions. In this chemical space, three high-ZT materials
denoted by (a), (c), and (e) in Fig. 8 are distributed near the
materials from the Mg1−xLixGe0.9Si0.1 system because they
commonly contain two elements Ge and Mg. Basically, the similar
feature representations yields the similar target values in machine
learning. Hence, although the thermoelectric materials from the
Mg1−xLixGe0.9Si0.1 system actually have the low-ZT (<0.4), XGBd
incorrectly predicted them as the high-ZT (≥1.5) materials because
the similarly-encoded materials (a), (c), and (e) in the training
dataset have the high-ZT (>1.4).
By contrast, SXGBd with SIMD greatly reduced the false positive

from the Mg1−xLixGe0.9Si0.1 system in the high-throughput
screening. As shown in Fig. 8, the three materials (a), (c), and (e)
belong to the material clusters (b), (d), and (f) in SIMD. The
materials from the Mg1−xLixGe0.9Si0.1 system have different sparse
encodings to the materials (b), (d), and (f) because they contain
only one element Mg in common or no element in common.
Therefore, SIMD can generate the representations of the
Mg1−xLixGe0.9Si0.1 system that are different to high-ZT materials
(b), (d), and (f). As a result, the prediction models based on SIMD
were able to correctly learn that the thermoelectric materials from
the Mg1−xLixGe0.9Si0.1 system are low-ZT materials.

XGB SXGB
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Fig. 7 Measured R2-scores of SXGBd in the extrapolation problem to predict ZTs for different values of the hyper-parameter and the data
size. a Prediction accuracies of SXGBd for different values of K in the original source dataset. b Prediction accuracies of SXGBd for different
values of K in subsets of the source dataset. K is the number of nearest material clusters in Eqs. (4) and (5). m is the number of material clusters
in the training dataset. For the quantitative comparisons, we present the R2-score of the baseline XGBd using the black dotted line.
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Mg1−xLixGe0.9Si0.1 system in the chemical space based on the sparse
encoding of the chemical compositions.
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Material space exploration based on global search method
with SIMD
In the result section, SIMD was successfully applied to discover
high-ZT thermoelectric materials based on high-throughput
screening. However, we can further extend SIMD to an automated
global search method for discovering novel materials in unex-
plored material space by integrating SIMD with randomized
iterative search algorithms called metaheuristic algorithms44. In
chemical science, metaheuristics have been successfully applied to
discover novel molecules and materials45–47. Various metaheuristic
optimization algorithms have been proposed based on evolu-
tionary method48, swarm intelligence strategy49, and physics-
inspired approach50. Although existing metaheuristic algorithms
employ different optimization schemes, we can integrate SIMD
without algorithmic modifications because we can identically
define a problem to discover novel materials based on SIMD as a
constrained optimization problem as:

x� ¼ argmin
x

f ðx; θ�Þ þ gðxÞ; (8)

where x is the sparse encoding of the elements in the chemical
composition, f( ⋅ ; θ*) is a trained extrapolation model to predict
target material properties from the input x, and g(x) is a penalty
term for checking violation of user-defined constraints on
discovered materials. In this formulation, f( ⋅ ; θ*) can be imple-
mented by SXGBd to extrapolate ZTs of the unexplored materials.
Furthermore, g(x) can be defined as domain-specific constraints
regardless of whether it is differentiable or not. For example, if we
focus on the materials containing maximum three elements, we
can define the penalty term as:

gðxÞ ¼ 1; ifjfxi jxi > 0; 8igj � 4

0; otherwise:

�
(9)

In addition to the example constraint, we can impose various
domain-specific constraints on the chemical characteristics of
discovered materials, such as target elements, ranges of target
properties, and the number of dopants. Note that if we want to
discover the materials maximizing the target properties, the
optimization problem in Eq. (8) can be defined as a maximization
problem with a negative penalty term. In this study, we conducted
the global search using equilibrium optimizer50 based on SXGBd to
discover novel high-ZT materials, and the search results are
provided in SI.

METHODS
Sparse encoding of chemical compositions
In the implementation of SIMD in Eqs. (6) and (8), we used the
sparse encoding x to represent the input chemical compositions
as the vector-shaped data. Formally, the sparse encoding of the
input chemical composition s is defined as:

xi ¼
re; if i ¼ ne and e 2 s

0; otherwise;

�
(10)

where e is an element in the input chemical composition s, re is the
ratio of e, and ne is the atomic number of e. In the implementation,
we considered the elements from H to Fm, i.e., the dimensionality
of the sparse encoding was 100.

Anchor space for material clusters allocation
To determine the material clusters for the input chemical
compositions based on the KNN method, the cluster identifiers
defined by the chemical compositions and the input chemical
composition should be converted into compact low-dimensional
vectors. To this end, we defined an anchor space where the
chemical compositions are represented as compact 12-
dimensional vectors. Formally, the chemical compositions of

the material clusters and the input materials are defined as an
anchor vector as:

a ¼ qmean � qstd � qmin � qmax; (11)

where qmean is a three-dimensional vector of the average atomic
numbers, atomic volumes, and atomic weights of the elements in
the input chemical composition. Similarly, qstd, qmin, and qmax are
calculated as the standard deviations, minimum values, and the
maximum values of the three atomic attributes of the elements in
the input chemical composition, respectively. Based on the anchor
vectors of the material clusters and the input materials, we
determined the material clusters of the input materials by
calculating the Euclidean distances between the anchor vectors
of the material clusters and the input materials.

Algorithmic description of SIMD
We present a Python-based algorithmic description of SIMD for
reproducibility of SIMD. Algorithm 1 describes the overall
process to generate the system-identified material features
based on SIMD. For given inputs D and K, the algorithm returns
the transformed dataset Z and the material clusters Cm, where
Z contains the system-identified features of the materials and
Cm is a dictionary storing the identifiers of the generated
material clusters.

Algorithm 1. The overall process to generate the system-
identified material features.

DATA AVAILABILITY
The collected dataset and all resources of the proposed method are publicly available
at https://github.com/KRICT-DATA/SIMD.

CODE AVAILABILITY
All experimental scripts and source codes of SGL are publicly available at https://
github.com/KRICT-DATA/SIMD.
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