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The first full-scale software implementation of the dynamic data evaluation cofiteptmoData Engine

(TDE)} is described for thermophysical property data. This concept requires the development of large
electronic databases capable of storing essentially all experimental data known to date with detailed
descriptions of relevant metadata and uncertainties. The combination of these electronic databases with
expert-system software, designed to automatically generate recommended data based on available experimental
data, leads to the ability to produce critically evaluated data dynamically or ‘to order’. Six major design
tasks are described with emphasis on the software architecture for automated critical evaluation including
dynamic selection and application of prediction methods and enforcement of thermodynamic consistency.
The direction of future enhancements is discussed.

1. INTRODUCTION of relevant metadata and uncertainties. The combination of

The NIST ThermoData Engi#€TDE) represents the first these electronic databases with artificial intellectual (expert-
full-scale software implementation of the dynamic data system) software, designed to automatically generate recom-

evaluation concept for thermophysical property data. Below mendejc_zl data based on _a_vallable experimental data, I_eads to
we shall discuss briefly the principal differences between the ability to produce critically evaluated data dynamically

static and dynamic data evaluation concégts. or ‘to order’. T_his concept contrasts ;harply with static critical
Traditionally, critical data evaluation is an extremely time- 223 e\.ﬁ:gagggéynvgCgartgusetvgﬁjgtl;ggt%?of?éslg 3?;?&:@;&
322 ;?Srz;:f;osv%?sil;rggt% ?:g::eecsiisénwglgtr]almmﬁgs :ﬁ;?;;g’ereduces the effort ano_l costs_associate_d with anticipating
" S ’ ’ .~ future needs and keeping static evaluations current.
fitting, etc. Because of this, it must be performed far in i ) _
advance of a need within an industrial or scientific applica-  ImPlementation of the dynamic data evaluation concept
tion. As a result, despite the enormous cost associated withCoNsists of a number of major taskg(1) design and
the critical data-evaluation process, a very significant part development of a comprehensive database system structured
of the existing recommended data has never been used ifPn the principles of physical chemistry and capable of
any meaningful application. This is because data require- SUPPOrting a large-scale data entry operation for the complete
ments often shift between the initiation and completion of Set of thermophysical (including transport) and thermochemi-
an evaluation project. In addition, it is quite common that €@l properties for chemical systems, including pure com-
by the time the critical data-evaluation process for a particular Pounds, mixtures, and chemical reactions; (2) development
chemical system or property group is complete (sometimes©f Software tools for automation of the data-entry process
after years of data evaluation involving highly skilled data With robust and internally consistent mechanisms for auto-
experts), it must be reinitiated because significant new dataMatic assessments of data uncertainty; (3) design and
have become available. This type of slow and inflexible development of algorithms and software tools to ensure
critical data evaluation is defined here as ‘static’. Essentially, quality control at all stages of data entry and analysis; (4)
all existing data evaluation projects fall into this category. development of algorithms and computer codes to implement
Moreover, the static data evaluation process for thermody-the stages of the dynamic data-evaluation concept; (5)
namic data has been unable to provide adequate conceptudf€velopment of algorithms to implement, target, and apply
solutions for chemical process design in rapidly developing Prediction methods depending on the nature of the chemical
fields such as biotechnology, where there is a demand for SyStem and property, including automatic chemical structure
simulation of hundreds of new technologies every year. ~ écognition mechanisms; and (6) development of procedures
The new concept of dynamic data evaluation was devel- /l0wing generation of output in a format interoperable with
oped at NIST/Thermodynamics Research Center (NIST/Major engineering applications, including commercial simu-
TRC)22 This concept requires the development of large 'ation engines for chemical-process design.
electronic databases capable of storing essentially all relevant
experimental data known to date with detailed descriptions 2. SOURCE ARCHIVAL SYSTEM

* Corresponding author e-mail: frenkel@boulder.nist.gov. Types of Da_ta - The t_erm data 1S V_ery gen_eral ar_‘d_'s
T Current address: Scientific Information Center, Thornton, CO 80241. commonly applied to a wide variety of information. Within
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the context of TDE, it is necessary to define several distinct 3. PROCESSING OF EXPERIMENTAL DATA AND
types of data, as each plays a specific role within the overall UNCERTAINTY ASSIGNMENTS
structure. In a recent artiéleve provided working definitions

for the basic types of thermodynamic data; true data fol
(hypothetical); experimental data; predicted data; and criti-
cally evaluated data. Abbreviated definitions are provided

The purpose of the TDE software can be summarized as
lows: use experimental data (contained in TDE-SOURCE),
predicted data (generated with algorithms in TDE), plus any
: o . user-supplied data, as input to an expert system to generate
here, but the reader is referred the original descriptions for . jtica|ly evaluated data that are approximations to true data.
more complete discussion. The difference between experimental, predicted, or critically
True Data (Hypothetical). True data are exact property evaluated values and true values can be defined as an error.
values for a system of defined chemical composition in a The error is never known; however, its mathematical
specified state. These data are (1) unique and permanentexpectation is never zero. A measure of the quality or
(2) independent of any experiment or sample, and (3) confidence in an experimental, predicted, or critically evalu-
hypothetical concepts with no known values. Because they ated value is expressed in terms of the uncertainty, which is
are hypothetical, true data values are not represented withina range of values believed to include the true value with a
TDE; however, the property values generated by TDE certain probability. A distinguishing feature of the TDE
(critically evaluated data) are approximations to the true software is that all data types associated with TDE include
values. estimates of uncertainties. Uncertainties for the experimental
Experimental Data. Experimental data are defined as anq predicted values form th_e pasis of uncertaintieg for the
those obtained as the result of a particular experiment on gcritically evaluate.d values. It_ls important to_er_nphaS|ze .that
particular sample by a particular investigator. The feature Nl comprehensive formulations of uncertainties (combined
that distinguishes experimental data from predicted and uncertainties t_hat include uncertainty estimates fo_r all error
critically evaluated data is the use of a chemical sample SOUrces) provide the full measure of data quality. Only
including characterization of its origin and purity. Experi- Comb'”ed uncertamtlgs with allevel of confidence of ap-
mental data only are stored in the TDE-SOURCE archival Proximately 95% are included in TDE. If these are propa-
system and serve as one of three data sources for processin ated into uncertainties for properties related to industrial

by TDE; the others types are predicted data and user-supplie re"?‘mi this can lead to enormous economic beneflts in
data. the implementation of results of chemical process simula-

) ) i tions, particularly for optimal equipment selection. Imple-
Predicted Data Predicted data are defined here as those yentation of this possibility can change fundamentally

obtained through application of a predictive model or method, the nature of future chemical process modeling and
such as a particular molecular dynamics, correspondingdesign_

states, group contribution method, etc. To serve as a basis for implementation of the dynamic
Critically Evaluated Data. Like predicted data, there is  data evaluation concept, an archive of experimental property

no particular sample involved with critically evaluated data. data must meet several criteria:

The feature that distinguishes critically evaluated data from  « Full traceability from numerical values to bibliographic

predicted data is the involvement of the judgment of a data sources

evaluator or evaluation system, such as TDE. Critically Unambiguous data definitions

evaluated data are recommended property values generated , \inimal data transcription errors

through assessment of available experimental and predicted Consistent and reliable assignment of uncertainties

data. . . All experimental data stored in the TDE-SOURCE archive
TDE-SOURCE Archive of Experimental Data. The  originate from the traditional archival thermodynamic lit-
TDE-SOURCE archive of experimental data is a subset of erature (journal articles, reports, and theses). Data for the

the TRC SOURCE archive. The TRC SOURCEwas TDE-SOURCE archive are compiled using Guided Data
designed and built as an extensive relational data archivalCapture (GDC) software that was described previously in
system for experimental thermophysical and thermochemicalthis journal® Property values are captured with a strictly
properties reported in the world’s scientific literature. The hierarchical system based upon rigorous application of
SOURCE archive now includes over 1 600 000 numerical the thermodynamic constraints of the Gibbs phase rule
property values and their uncertainties on more than 17 200with full traceability to source documents. Use of the GDC
pure compounds, 17 000 binary and ternary mixtures, andsoftware ensures that captured data meet the above criteria.
4000 reaction systems. Its structure is based principally on Al data selection, capture, and archiving in the TRC
the Gibbs phase rule and complies with all the requirements SOURCE data system are completed within the TRC Data
necessary to serve as a comprehensive data storage facilitEntry Facility at NIST. Personnel of the NIST/TRC Data
of experimental property data for implementation of the Entry Facility are responsible for managing all contributions
dynamic data evaluation concept. At present, the rate ofto TRC SOURCE including those from in-house compilers
collection of numerical property values is near 300 000 per and from NIST/TRC collaborators worldwide. NIST/TRC
year. It is estimated that TRC SOURCE will contain 80% operates a large in-house data-capture effort staffed chiefly
of the available experimental thermodynamic data for organic by undergraduate students of chemistry and chemical engi-
materials by the end of 2006. Version 1.0 of TDE includes neering. Collaborators from outside NIST/TRC are involved
the TDE-SOURCE archive, which contains all experimental with focused data-capture projects such as those related to
data for pure compounds contained in TRC SOURCE at the specific compound types, properties, lingual sources, or
end of 2004. contributions to the TRC Tables projéctn 2003, these
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collaborations were expanded to include authors of articles The combined standard uncertainty represents one
published in major peer-reviewed journals, as indicated in standard deviation and is related to the combined expanded
recent announcements in thlournal of Chemical and  uncertaintyUy through the expression

Engineering Datd® The Journal of Chemical Thermo-

dynamics'! Fluid Phase Equilibriat> and Thermochimica U, = Uk (2)
Acta®® All experimental data contributed by authors are ) ,
available free of charge from the Wéb. wherek, is the coverage factor. The coverage factor is a

numerical multiplier used to expand the combined standard

. . : ncertaintyuy with a specified level of confidence (usuall
in-house or through outside collaborations, are processed an(é; Y b ( y

: 5%), which is an estimate of the probability that the
validated through the same procedures. Target data SourCEFneag,urand is within a specified rangg. The mB(/aasurand is

(arE'CIG?' Ir\lelg(_)rr}_ls_heéc')pfﬁre ds?lectegl bylexpe{t the,:n:jo?ynam"sometimes referred to as the ‘true value’, the exact value of
ciSts a : ata ana relevant metadata are | pioh g unknowable, as noted earlier.

captured with the GDC software. Senior NIST/TRC person- Recently, we reviewed practices in the expression of

nel rev;ewl_tdhte c%lec_tid |nfct>_rma}t|?rr]1 for cohmpldeFergﬁssTgréd uncertainty in the experimental literature for thermodynamic
general validity. 1he information Is then archived in the property measurements with determinations of the critical

SOURCE data system. Once archived, subjecting .(.a""Chtemperature‘l’C for pure compounds used as a case sfddy.
compound for which new data were added to the critical In that article it was shown that although gradual and

eve_1ll_1ation process of TDE provides an addi;ional strict continuous progress has been made in the reporting of
validity check. Large deviations between experimental and uncertainty information, comprehensive uncertainty analyses
rgcomdn;ended valur?s ?enerated SY dTDE' are Care:}‘llyhre'remain rare, particularly with regard to consideration of
viewed for typographical, compound identification, an other contributions arising from sample impurities. Examples were
types of common errors. These procedures constitute tr?eprovided of dramatic underreporting of uncertainty magni-
NIST/TRC data quality assurance program described PreVI"tudes due to failure to consider this important component.

ously.*® In the time period since 1990, approximately 42% of the
A key application of the information gathered with GDC  articles reporting experimentdl, values listed only some

is generation of an estimated combined standard uncertaintytype of precision information rather than a comprehensive

for each numerical property value. The expression of combined uncertainty. Information on precision provides only

uncertainty requires clear definition of a variety of quantities a lower bound for the combined uncertainty and is of limited

and terms. Definitions and descriptions of all quantities value to data evaluators and application engineers. Because

related to the expression of uncertainty in this paper conform reported uncertainties are so often poorly defined, a method

to the Guide to the Expression of Uncertainty in Measure- for generation of independent estimates for combined

ment ISO (International Organization for Standardization), uncertainties was developed at NIST/TRC.

October, 1993° Reference 16 is commonly referred to by~ The scheme developed by NIST/TRC for estimation of

its abbreviation; the GUM. Additional information and the combined standard uncertaintym, for a given property

related references can be found in ref 17. The recommenda-p as a function of constraintsand variables is based upon

tions have been summarized in Guidelines for the Evaluation 3 symmation of terms:

and Expression of Uncertainty in NIST Measurement

Results'® which is available via free download from the ucomb2 = Up2+ { uc(aplac)U}Z + 3{u,(9p/dv) c}z (3)

Internet (http://physics.nist.gov/cuu/).

Recently, we summarized the recommendations of the The partial derivativesafp/dc), and @p/dv). are calculated
GUM with particular application to the reporting of experi- approximately based upon the reported property values, if
mental thermodynamic property ddfaThe most compre-  possible, or are estimated based upon approximate models
hensive expressions of uncertainty are the Combined Stanfor the property. The summations are over all constraints
dard Uncertainty, and the Combined Expanded Uncertainty and variables. The standard uncertainty for the propeyty

All experimental data in TRC SOURCE, whether captured

Uyx. The Combined Standard Uncertainty can be repre- is rarely provided in a document and is estimated at NIST/
sented as a mathematical expression TRC based upon the following general relationship:
2 __ 2 2
u, = f(Xl, X, X3, ) (2) U, = {umethod + Z(fm'umethod—details )+

. . . {usample2 + Z(fs'usamplc,}detailsz)} (4)
where the symbolg; represent various contributions to the
uncertainty that are propagated to estimgtd-or example, This relationship involves two major contributions tg:
the estimated uncertainty for a temperature value might be uncertainties associated with the experimental method and
a function of the method and traceability of the sensor those associated with the sample.
calibration, the instrument used to read its response, estimated The termumetodiS @ default contribution ta, and is based
gradients in the apparatus, effects of thermal inertia, and soon the particular experimental method only. For example, a
forth. A well-designed experiment (i.e., one that includes heat capacitfsamdetermined with high-precision adiabatic
the identification and control of the largest contributions  calorimetry might have a default value fofetoq0f 0.002
in eq 1 through determination of values @f,/0x) Csatm While the same property determined with a differential-
will improve the quality of the uncertainty estimates, but scanning calorimeter might have a default value 10 times
some scientific judgment is always involved in estimating larger. Some details related to particular methods are also
U considered, such as the method of calibration for a vibrating-
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tube densimeter. These adjustments are indicateg-8S-detais Table 1. Blocks of Related Properties Used as Source Data for
in eq 4 and can increase or decreag®ased on the value ~ Critical Evaluation by the TDE Software
of fn, which is 1 or—1. block name properties
The termusampiein €q 4 represents a default contribution  phase diagram block  triple point temperature
to u, related directly to the purity of the sample. Additional critical temperature
contributions tou, related to the sample are indicated as normal melting temperature
Usample-details in eq 4. The magnitude Oﬂsample-details is a Eg:.mgfs&%zi;%%erawre
function of several items, including the property, special phase boundary pressére
characteristics of the material (e.g., thermal stability or critical pressure
hygroscopicity), and the experimental conditions (e.g., pres- Volumetric block density
sure or temperature range). This formulation is required to molar density

specific volume

take into account the fact that impurities do not affect all molar volume
properties or experimental methods to the same extent. compressibility factor

Values for the standard uncertaintizgsandu, (anduy,, if second virial coefficient
appropriate) are taken from the original document, if third virial coefficient

. . critical density
provided and supported in the text. Default values are critical volume
substituted for those not provided. Default values are based critical compressibility
upon the general method used and are larger than those energy block enthalpy of phase transition
reported typically in the literature for the method. Incomplete cryoscopic constant o
i he absence of this information in a document enthaipy of vaporization or sublimation
reporting or the abse . heat capacity at constant pressure
is considered indicative of the general quality of the work. heat capacity at saturation pressure
Consequently, results reported with incomplete uncertainty heat capacity at constant volume
descriptions are assigned uncertainties at NIST/TRC, which speed of sound
ly larger than those with well-supported esti- other property block refractive index

are commonly larg pp NaD-refractive index
mates. viscosity

If estimates ofu.omp are provided in the document, these kinematic viscosity
are checked against the estimates calculated with eq 4. Large fluidity

surface tension

discrepancies are reviewed carefully and can form the basis thermal conductivity

for modification of default values. Because various indicators
of precision (repeatabilities, deviations from fitted curves,  2The property phase boundary pressure includes pressures associated
etc.) provide only a lower limit for any uncertainty estimate, With all phase boundaries including vapor pressures, sublimation
these are considered only if they are larger than the defaultPressures, crystal-liquid boundary pressures, and crystal-crystal bound-
uncertainties for the particular variable, constraint, or prop- ary pressures.
erty. . ) -

'The approach descr[bgd here for the estimation of cpm- $gt|)£le 2. List of All Properties that Are Critically Evaluated by
bined standard uncertainties provides the basis for consistent
evaluations of the numerous data types encountered. This
brief overview demonstrates that even approximate estimates’hase diagram block triple point temperature
of Ucomp require careful consideration of a wide variety of critical temperature

i . . phase boundary pressure (all phase boundaries)
contributions to the uncertainty. All numerical property volumetric block single-phase density

block name properties

values used in the TDE evaluation process are accompanied saturated density

by uncertainties expressed as expanded combined uncertain- S?;?O”;jdv'”a_'tCOEff'C'e”t

H : ~ 0, : critical aensity

ties (level of conflde_:nce_ 95%), Where_ independent energy block enthalpy of phase transition
variables and constraints (if any) are considered exact, and enthalpy of vaporization or sublimation
all uncertainty contributions are propagated to the property. heat capacity at constant pressure (ideal gas)
Uncertainties are used for relative weighting of data points heat gaF;aCIty z’ét saturation pressure

H H H Ho Speed or soun

in regression procedurgs anq for propagation to uncertainties property block _ refractive index

for the program output: critically evaluated property data. viscosity

In the absence of uncertainty information (e.g., if a user surface tension

supplies data without uncertainties), the program assigns thermal conductivity

conservative default uncertainties based on the identity of
the property. _ _ _ o .
The complete list of properties considered within TDE is
4. SOFTWARE ARCHITECTURE given in Table 1. The properties are classified into four

Property Groups or ‘Blocks’. The properties that are  Property groups or blocks: phase diagram properties, volu-
evaluated dynamically within this first version of the TDE Mmetric properties, energy properties, and other properties.
software are thermophysical properties of pure compounds.Table 2 lists all properties that are critically evaluated by
The focus is primarily on organic compounds containing the TDE. The listin Table 2 is shorter because some properties
elements C, H, N, O, S, F, Cl, Br, | and to a lesser degree listed in Table 1 are closely related through simple algebraic
Si. Future developments will include expansions to include calculations (such as molar volume and specific density) or
properties of reactions and mixtures, including phase equi- through reversal of properties and variables (such as boiling
libria. temperatures and vapor pressures). The combining of closely
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Figure 1. Phase diagram for a typical compound. The specific example is the phase diagram for naphthalene. The critical point, a triple
point, and three subcritical phases (crystal, liquid, and gas) are indicated.

related properties into single properties is termed normaliza- rium) are represented by defined equations with specified
tion and is described in the next section. After normalization, ranges for the independent variables.
the properties within a block are evaluated together with  There are three general methods for representation of
subsequent enforcement of interblock property consistency,evaluated properties that are based on (1) an equation of state
as described later. (EOS), (2) separate equations for particular subsets of related
Relationships between the property blocks are complex, properties, and (3) separate equations for all properties. The
but several generalizations can be made. The phase-diagrarsecond approach is a hybrid of the first and third and is
block is used to delineate the phase regions (crystal forms,impractical for application in TDE because of the wide
liquid, and gas) and their boundaries (Figure 1). Properties variety of properties and data scenarios addressed. The
in the other three blocks are associated with single phasesadvantage of an EOS approach is that representation and
phase boundaries, or special points (triple or critical) defined intrinsic consistency of all thermodynamic properties with
by the phase diagram. The phase-diagram, volumetric, anda single equation is inherent in the method.
energy blocks are tied by thermodynamic consistency condi- There are myriads of alternative EOS formulations in the
tions. That is, properties within the various blocks are related thermodynamic literature. These are mostly empirical in
through mathematical thermodynamic identities. After initial nature and are often applicable to specific families of
evaluation within a block, enforcement of thermodynamic compounds with, at best, a tenuous connection of parameters
consistency conditions is one of the most important featuresto physical quantities. A recent advanced implementation of
of TDE and is described later in this paper. The fourth the EOS approach is that based on the Helmholtz erfé¥gy.
property block (other) has no influence on the first three Widespread application of this advanced EOS is severely
blocks and is evaluated last because properties evaluated ifimited by the lack of required extensive high-quality
the first three blocks are used for processing the propertiesexperimental data for properties spanning the—diagiid
in this block. saturation lines and single-phase (gas, liquid, and supercritical
Representation of Properties in TDE The number of fluid) regions. In practice, advanced EOS representations are
variablesF associated with a thermodynamic property is constructed for data that were evaluated previously. Conse-
defined by the well-known Gibbs phase rule. For pure quently, the advanced EOS approach is suitable for a limited
compounds, this rule reduces to the simple fdfr 3 — number ¢100) of extensively studied compounds. Less-
nPhase where nPhaseis the number of phases present. exacting ‘cubic’ EOS formulations have been developed for
Consequently, properties of pure compounds are (1) singleapproximate property representations; however, these are
valued, if they are associated with triple points; (2) functions incapable of representation of properties close to the limits
of one variable, if they are associated with phase boundariesof experimental uncertainty, making them generally unsuit-
(or are limiting values such as virial coefficients), or (3) able for TDE.
functions of two variables, if they are single-phase properties. A key goal in the development of TDE was good
Certain properties, which are not thermodynamic, may have representation of property values for a wide variety of data
more independent variables, such as refractive index, whichscenarios from extensive data for all phases and boundaries
is also a function of wavelength. All properties (other than to the common case of limited or low-quality experimental
those associated with triple points; i.e., three-phase equilib-data. Application of the second general method for property
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Table 3. Normalization Procedures Used in TDE

information required

property normalized property for normalization comment

normal melting temperature triple point temperatlige  none increased uncertainty
enthalpy of fusion in air enthalpy of fusion &, none increased uncertainty
cryoscopic constant enthalpy of fusionTaf T
normal boiling temperature and boiling vapor pressurey approximate @/dT for uncertainty

temperature at pressupe transformation
triple point pressure p(Tip) Tip
critical pressure. p(Te) critical temperaturd.
critical compressibility critical density Te, Pe, molar mass
critical densitypc o(To) Te
specific volume density
molar volume, molar density, compressibility density molar mass

factor
virial coefficients density none
fluidity dynamic viscosity none
kinematic viscosity dynamic viscosity density

representation (separate equations relating property subsets) Data Normalization. Certain properties are commonly
was not chosen because such equations are effective for onlyexpressed in different, but closely related, formulations. For
very specific data scenarios. To achieve the goal of ap- example, density can be expressed as specific density (mass/
plicability to the widest array of data scenarios, representationvolume), molar density (moles/volume), specific volume
of all properties by separate equations was chosen in(volume/mass), molar volume (volume/mole), or compress-
development of TDE. This approach requires explicit ap- ibility factor. In these cases, it is impractical to apply separate
plication of thermodynamic consistency conditions during equations for each property with common parameters.
the evaluation process and is therefore very challenging Instead, the property data are normalized, i.e., reduced to a
mathematically. However, this method of representation has single property selected for output representation. Normaliza-
the important advantage that additional equations can be usedion is trivial, if it does not require data beyond the molecular
to constrain derived property curves to only ‘valid’ shapes, mass and fundamental physical constants, such as those for
thus increasing the quality of the evaluation in the event of density listed above. Nontrivial normalization requires other
an inadvertently bad data source. evaluated data. For example, conversion of kinematic viscos-
Data Sources Data used in the TDE evaluation process ity into dynamic viscosity requires an evaluated density at
are experimental data stored in the TDE-SOURCE databasefhe same conditions of temperature and pressure. Table 3
predicted data for filing gaps in experimental data, and lists all of the normalizations carried out in TDE together
property values entered by the user. This last data type allowswith the properties required in the case of nontrivial
inclusion of proprietary or other data not available with the normalizations. The initial and normalized properties are
TDE-SOURCE program database. User data are processedisted. Critical pressures and critical densities involve a
in the same way as that of the database. Data predictions inspecial type of normalization in which the properties are
the first version of TDE (Version 1.0) are based on group- converted to saturation properties at the critical temperature.
contribution and corresponding-states methods. Methods andrhis provides consistency between the saturation line and
algorithms for data prediction are discussed later in section evaluated critical properties. Single-phase and saturated phase
6. properties are described by separate equations in TDE;
Data used for evaluation (source data) within TDE are however, both kinds are used near phase boundaries as source

organized in a hierarchy for a particular compound. This data for the equations.

organization allows easy display of traceability to the  Evaluation Sequence (Overall).The sequence of the
prediction method or bibliographic source for any numerical overall evaluation process is shown in Figure 2. Once the
value. For a given compound, data are organized as datauser selects a compound (step 1), there are three major steps
sets within properties and data points within data sets. Datain the process. The first major step has three substeps and
sets join data from one literature source, for one sample, involves user participation. The substeps are (1) compound
and for each experimental method. Data generated with aselection, (2) data gathering from the TDE-SOURCE data-
particular prediction method are also combined into a data base (and from the user), and (3) optional data review by
set. Data points are property values with accompanying the user, as shown in Figure 2. The second major step has
information: values of independent variables, a numerical four substeps and does not involve user participation. The
property value, and an estimated combined uncertainty.four substeps (as numbered in Figure 2) are (4) trivial
Properties are distinguished by name, independent variablesnormalization, (5) completion of the initial critical evaluation
and the identities of all phases present. For data involving process within the first three blocks, (6) enforcement of
two phases, the phase associated with the property (theinterblock thermodynamic consistency, and (7) completion
primary phase) is identified. For example, densities on the of the critical evaluation process for the final block properties
saturation line are identified as those of the gas (in equilib- not involved in interblock consistency enforcement. The third
rium with the liquid) or those of the liquid (in equilibrium  major step again involves optional user involvement and has
with the gas). The provenance of every data point used inthree substeps. The three substeps (as numbered in Figure
TDE can be traced to its source, whether it is a bibliographic 2) are (8) review of results including various deviation plots
citation, prediction method, or user-supplied data. for all source data, (9) selection of alternative fitting
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Figure 2. Sequence of the overall evaluation process.

equations, and (10) output in text and ThermoML format. 2) including selection of alternative equations for data
Because the foundation of TDE is enforcement of thermo- representation (i.e., equations other than those selected
dynamic consistency, all properties are always evaluated toautomatically by NIST ThermoData Engine) and specifica-
the extent possible. This is why there is no step involving tion of ranges for independent variables.

property selection by the user before evaluation. Evaluation Sequence (Single Property)Although the

The sequence in which the four property blocks are evaluation process for each property often includes some
evaluated (as well as the sequence of property evaluationsunique aspects, a general sequence can be described that
within each block) is critical. Each block requires data demonstrates some key functions of the program. The
evaluated in the previous block for evaluation of the following paragraphs describe each step in this general
properties it contains. Interblock consistency is enforced sequence, which is shown in Figure 3.
through iterative processes described later. The fourth The first step, normalization, was described earlier. Once
property block (other) is dependent on the first three but is jnjtial values for properties in the phase-diagram block are
noti_nvolved in consistency enforcement, which is why itis eyalyated, phase adjustment for subsequent single-phase
last in the sequence. properties is possible (step 2 of Figure 3). Phase adjustment

Although the user is not directly involved in the automated involves redistribution of data between phases and rejection
critical evaluation process, there are three methods by whichof data with invalid phase specifications. Phases supported
the user can affect the results obtained: (1) addition of data,by TDE are gas (which includes the supercritical region),
(2) forced rejection of data, and (3) modification of estimated liquid, and various condensed phases, such as crystals of
experimental uncertainties. These are completed ahead oflifferent types, glasses, and liquid crystals. Within the TDE-
the automated evaluation in the first major step at the top of SOURCE data, the phase specification “fluid” is often
Figure 2. The user has extensive control over the format of applied to the gas, single-phase liquid, and supercritical
the program output in the third major step (bottom of Figure regions. This is necessary because the phase regions are not
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| with an appropriate number of terms to all of the available

| 1. Normalization data and determining both the deviations for individual data

v points and the overall scattering. This information is used
| 2. Phase adjustment | in statistical weighting of data, as described later. In step 7
v (Regression), the number of terms is selected (if supported

by the mathematical form of the equation), and the equation
parameters are fit to the experimental data. Linear and
nonlinear (LevenbergMarquardt, simplex, Powell) least-

| 3. Generation of predicted data |

| 4 Validation with predicted data | squares fitting methods are employed by T#&fter fitting,
data that show relatively large deviations are detected and
—>| 5. Model selection | rejected through the smart rejection procedure (step 8 of
v Figure 3). This procedure is similar to that described by
| 6. Scattering analysis | Wilhoit et al?® The tolerance leved; for rejection is based
l on the data quality in the neighborhood of each data point
| 7. Regression | ri =f. Z WjAj e [X—Xil/k (5)
]

!

| 8. Smart rejection |

wherer is the tolerance foith data pointf is the tolerance
factor (usually 3)w; is the weight of thgth data pointA;

is the square of the deviation of thi data point from the
equation,X is the independent variable (eq 5 is shown for
the case of a property as a function of one variable), kand
is the propagation distance parameter (usually 20K for
temperature as an independent variable). Parameters control-
ling rejection aref andk and the weights. Theith data
point is rejected if the square of its deviation from the
>I Finish | equation exceeds thg criterion. Settingf = 3 andk = oo
reduces the equation to the conventionadr8jection. Use

of the smart rejection procedure increases the tolerance in
regions with lower data quality. Figure 4 illustrates the results

dﬁfined u dntil the phasi b(_)unldarir?s are ddeterminedq. [?grin%of smart rejection with the experimental vapor pressures of
phase adjustment, all single-phase data are distributed, ., ane a5 an example. Extensive, high-quality data are

between the gas and liquid phases. All values With Te available forT > 175 K, but only data with relatively large

Or p < psa are associated with gas. All other fluid-phase ' ncertainties are available between 175 K dgdnear 85
data. are conS|dgred liquid. For saturated properties, dataK). Data points shown in gray are outside the tolerance limits.
ou_tS|de the defined extent of t'he phase boundaries are After step 8 of Figure 3, if any data were rejected, steps
rejected and not used in evaluation. For example, all vapor5_g are repeated (with the rejected data removed). This cycle
pressure values witlT greater than the evaluatéld are g repeated until no further data are rejected. As data are
rejected. rejected, the number of parameters or even the selected
In step 3 of Figure 3, predicted values and their estimated equation may be changed during the cycle, depending on
uncertainties are generated where possible. Prediction meththe property. In step 10 of Figure 3, the resulting equation
ods and their selection are described later in section 6. Thejs tested for validity of shape using criteria individual to each
predicted values are then used in step 4 (Figure 3) for roughproperty and equation. The equation is also tested to
validation of the experimental data. Values deviating from determine whether it adequately describes the experimental
the predictions by more than triple the conservatively data. If deviations exceed 10 times the estimated uncertainty
estimated uncertainties for the predictions are rejected. of the experimental data points, the equation is rejected. If
Uncertainties for the predictions are relatively large, so this the equation shape is invalid or does not adequately describe
validation step is primarily to catch large errors that are the experimental data, they are substituted by predicted
typically typographical either from the original source values (step 9 of Figure 3).
documents or generated during data processing. Application of Predictions. As noted earlier, predictions
Flexible and automated model selection (steps35of are used for validation of source data and for filling gaps in
Figure 3) is a key feature of the TDE software and is based experimental data. The prediction methods used in the first
on the extent and quality of the experimental data available. release of TDE are group contribution (GC), corresponding-
For example, the 5-parameter Wagner equétisnselected states (CS), and combined (GC-CS) methods. Details related
for vapor pressure representation, if the critical temperatureto automated selection of prediction methods are described
is available; otherwise, an expansion ofdyWs T is selected. later in section 6. If multiple prediction methods are available
Scattering analysis (step 6 of Figure 3) is applied to each for a given property, the most reliable (lowest estimated
data set (typically data from a particular bibliographic uncertainty) method is chosen. This approach allows simple
source). This analysis checks for large deviations within a addition of new or higher-level methods, such as those based
particular data set and checks the validity of the estimated on molecular dynamics or various types of ab initio calcula-
experimental uncertainties by fitting the selected equation tions. Unfortunately, it is generally the case that higher-level

9. Substitute by prediction

Figure 3. General evaluation sequence for a property.
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Figure 4. Percentage deviations from the fitted Wagner equatifum experimental vapor pressures for propane. Data points in gray were
rejected with the smart rejection procedure that includes consideration of local data quality.

. . — Experimental
1. Predict —P» 2. Validate p,, ] | vapor pressures p,,,
pr and AvapI—I(pr) *
J: 3. Obtain Ty, from p,
4. Predict T,
HN < ‘ Experimental
— 5. Evaluate T, — critical temperatures
< Lo
6. Predict p,
—P
|| lid || Experimental
7. Validate p, critical pressures p,
Evaluated and
[ | Experimental C,(gas)
8. Predict 9. Evaluate —
Vapor pressures pg, | 5|  vapor pressures pg,
| |  Experimental
C,,(liquid)

Figure 5. Use of predictions for the normal boiling temperatiigg enthalpy of vaporization at the normal boiling temperatygH(Tyyp),
the critical temperatur@,, the critical pressurg., and vapor pressuf@, in evaluation of vapor pressure. Most of the prediction methods
used are of the group-contribution type and require the molecular structure.

methods have been only poorly validated, resulting in psy data (step 3) and is used in prediction of the critical
property values with ill-determined uncertainties. temperaturerl, (step 4). The predicted. is then used for

An example of the use of property prediction is shown in rough validation of experimentdl values and the evaluated
Figure 5. In step 1 of Figure 5, the normal boiling poligg T. is generated (step 5). The evalualeds used for critical
and enthalpy of vaporization at that temperatgH(Typ) pressurgp. prediction (step 6), and any experimergatiata
are predicted with the molecular structure only (a group- are validated (step 7). Predictpg;values are generated from
contribution method) and are used for validation of experi- Ty, T, @andpc (Step 8). Finally p. (converted tqsaat Tc) is
mental vapor pressurgsy (Step 2). A value ofT,, (now processed together with experimental and predicted (if
based on experimental data) is derived from the validated needed) vapor pressure data to generate the evaluated vapor-
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L oot e - 1-tridecanol - [ ngarithim of Phases boundary pressure 0 shown in Figure 6a is anomalous, and results from the
i:,"“ “T “°|"’" °'|“* T il J_Dm_l experimentally, being too low. Use of this value in the vapor
Fras | Dev| %Dev | Lot | Lol | Wairg | 2| 7] o _l_lw R JFM pressure prediction (step 8 of Figure 5) yields values that
2 T *—experimental 7y, are inconsistent with all experimental data, as shown in
J I Figure 6b. The experimentd, value is rejected, and a new
g o “‘u.__‘_‘ Thp is generated from the vapor pressures at lower temper-
= i N ature. The final vapor pressure curve is shown in Figure 6c,
LI “‘“--..H where the rejectedy, value is apparent.
£ T . Default and Alternative Equations. The modular struc-
é R . . s ture of TDE allows flexibility in equation selection for each
: | < increasing T’ \ property. For each equation a class is defined that provides
a S— ok o - - required functipnalit_y to TDE for calcul_ation of property
UTemperature (/) values and their derivatives by state variables and equation
a 4 parameters, determining the number of parameters, assigning
! LT =0l statistical weights to source data, and assessing validity of
5, Fe Vew Adicn Cheds Help =18 x| . .
—;l ‘ ‘ | | I | | "— U_U parameters. Models (i.e., equations) can be added or sub-
0] | ] were| [l oo stituted without changes to the evaluation code. The ‘default’
g A\ e experimental 7, equations are the set of equations selected by TDE for the
% A ~ properties during the evaluation process. If multiple equations
P oo are available, TDE selects the most suitable or better-fitting
g oo equation. For example, if the critical temperature is available,
o . the Wagner equatidhis selected for vapor pressure repre-
j “- Inconsistent predicted data ‘-\.,‘. sentation; ptherwise, gnother expansion functipn is u;ed. T_he
&
3 based on low Ty, value ﬁ.\ complete I|s_t of equations supported by TDE is provided in
= . the Supporting Information.
| T oo awEomi oo oA oons omE s TRd Alternative equations are defined as those needed by users
2 VTemperature (17K) but not selected by TDE as default equations in the evaluation
- process. The user can request refitting evaluated data by any
e e alternative equation. The alternative equations are fit to
= | | | | | critically evaluated property values generated by TDE. The
j i"'—“ — 5 P M—J—l—l alternative equations are not used in the evaluation process.
7 o TDE supports three sets of alternative equations that are
% i commonly used in engineering applications: Y&s,
i ok DIPPR? and PPD® equations as well as some other
Eo- TR common equations such as the Antoine equation for vapor
P Reiedted e pressures.
g gjecte L Statistical Weighting of Data. Statistical weights are used
s I experlmenta] T bp » for scaling the contribution of each data point to the objective
Ao _ functior?? during fitting and in generation of uncertainties
- T T T T VG T 7 T for evaluated values. Generally, weights are based on the
= Viemperatore (1) reciprocal square of the uncertainties of the property values.
c =

As described earlier in section 3, uncertainties for experi-
EtlgUfgcg FTTJ?J%pw?tlr?taﬁ)aﬁggqu\ilsohhs? fﬁ;:j'éi aétr?r:jgomlfh’/'glt&%n of mental property values obtained from the archival literature
mchL)Jded P?ot (b) shows that vapor p)r/essuresp predlcﬁtteﬁd (step 8 ofd€ estlmf’;lted at NIST/TRC based upon |r}format|pn provided
Figure 5) with this anomalous value are inconsistent with all other PY the article authors for metadata, which is often incomplete.
values. In plot (c), the anomaloug,, value was rejected and  The adjustments described here are intended to further refine
replaced with one generated from the vapor pressures at lowerthe weighting factors in the data evaluation process.
temperatures with much improved consistency apparent. The statistical weighiv for a data point used in fitting is
calculated by the equation
pressure equation (step 9). Liquid and ideal-gas heat capaci-
ties, if available, are used to constrain extrapolatiomp<gf w=(U*+ 02+ +H? (6)
down to the triple point temperatufi.

The value ofTy,, can be significantly changed during the where U is the source data uncertainty (the expanded
vapor pressure evaluation, if the initially derived value (step combined uncertainty estimated as described in section 3),
3 of Figure 5) included previously undetected large errors ¢ is the deviation from an appropriate equation fitted to the
in the source data. In those cases, step8 &re iterated until  data setsis a data set quality factor (average scattering from
convergence is reached. An example of the effect of iterationsthe equation fitting the data set), aBdre adjustments for
is illustrated in Figure 6. The example shows experimental data sets comprised of smoothed values or values calculated
psat data for 1-tridecanol that includes an anomalously low by equations. The uncertainty is revised if the original
value of Ty, (probably due to undetected sample decomposi- uncertainty is missing (possibly with user data) or is
tion). Figure 6a shows the results after completion of step 3 unrealistically small. Reasonable defaults are used in both
of Figure 5. The shape of the curve of pgf) against 1T cases for all properties ands contributions characterize
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data set quality and are significant when the scattering within Table 4. Major Properties Currently Predicted by TDE
the data set exceeds the stated uncertaiftlesThe S property methods type
contribution decreases weights for smoothed data sets

; ’ @S normal boiling JRA® CG A MpAx GC

because smoothed values show little scattering by definition.  temperature
This scattering does not reflect the quality of the underlying critical temperature JRCGEMP W GC
experimental data. We assume that the best reported datacritical pressure JRCGSMPIW.F GC
are available as original experimental values. For single-value Crtical density JR.CGF MP? GC
. . . ) saturated liquid density Yamada and Gtfhn CSs
properties, such as triple point temperaturereduces to ideal gas heat capacity BR GC
/U2 liquid heat capacity Bon(f CS
In certain situations, property values are transformed before second virial coeffs Xiarf§ ; CS
fitting for making equations linear with respect to the hirdvirial coeffs L'%?ngxa"ﬁgg\/e " €S
parameters and allowing direct computation of the param- yapor pressure Ambrose and Waltbn CS
eters. For example, vapor pressure is commonly fitted with gas viscosity Luc&8 CSs

a logarithmic equation form, as is saturated density, when liquid viscosity ~ Sastriand Réb GCand CS

fitted with the Rackett equation. In such cases, all contriby- 93s thermal conductivity - Chufiy €S
. . . liquid thermal Chung Cs

tions tow are transformed in the way the uncertainty would conductivity

undergo during property transformation. When the transfor-

mation is logarithmic, uncertainties and deviations contribute 2 GC = group contribution; CS= corresponding stateJoback and

to w as relative (divided by the property value) rather than Reid. ¢ Constantinou and Ganf Marrero and Pardillo® Wilson and

absolute values. Weights are dynamically recalculated beforeJaspersod.Method of Joback and Reid with group parameters reevalu-
o ' ated at NIST/TRC.

each fitting procedure.

Data Quality Assurance for TDE-SOURCE Data o o . ) )
Automated data processing may give meaningless results ifShape (validity criteria are discussed below) or fails to fit
erroneous data are not detected and corrected or discardedhe data within the estimated uncertainties. Sometimes, the
Such data are unavoidably present in any data source to soméuestion of which data are incorrect can be resolved during
extent. TDE-SOURCE database data entry tools (Guidedthe enforcement of thermodynamic consistency between
Data Capturé?’ ensure that all information entered is Properties. Once data inconsistency is detected, the algorithm
correctly defined and completely specified in terms of the attempts to resolve the problem by revising relative weights
Gibbs phase rule (phases, independent variables). The onlf the data sets. The basis for locating a problem data set is
remaining kinds of errors are numerical. Regardless of the deviations from a rough fitting equation that ensures a valid
source of erroneous values, whether it is a poorly designedshape (€.g., the Rackett equation for saturated liquid density)
experiment, typographical errors in publications, or misi- OF the_fact that elimination of one data_ set re_solves the
dentified phases or substances, three types of errors can b#consistency. If all attempts to resolve inconsistency are
recognized® (1) invalid property values (e.g., negative unsu.ccessful, the experimental data are substituted by
temperatures; subcritical gas densities correspondidgrto  Predicted values. .

1, sing|e-phase ||qu|d densities lower than the saturated Uncertainties. Uncertainties are calculated based on the
density at the same temperature), (2) out-of-range variablecovariance method for variable dependent properties. The
values (e.g., saturated vapor pressure reported forTg; covariance matrix for an equation is obtained by multiplica-
single-phase liquid density at a pressure lower than thetion of t_he r_emprocal Ie:ast-squares matrix built from sums
saturated vapor pressure), and (3) large deviations from theOf contributing data points (rather than average values) by
fitting equation, taking into account the local data quality the sum of the squares of the adjusted uncertaitfiesf
using eq 5. data points, described below. When the least-squares task is

Invalid values are detected before fitting each property nonlinear, the least-squares matrix is taken from the last
based on the information available at that time in the iteration. If the least-squares matrix combines more than one
evaluation process. Phase diagram properties are processe@foperty, an appropriate fragment of the reciprocal matrix
first, which allows use of the range of existence for each Mmay be taken. )
phase to invalidate any data outside the appropriate region. Adjusted uncertainties, are calculated through combina-
Property values then undergo additional validation against fion of the estimated TDE-SOURCE data uncertainties
predicted values using the methods listed in Table 4, plus @nd curve deviations:
the group-contribution method of Ruzicka and Dom&fski
for values ofCg,(liquid) and the PengRobinson equation UA2 = 1/2-(U2 + 6% 7
of staté® for gas-phase densities.

Any data, even high-quality data, may be harmful in the Curve deviations reflect both data errors and model limita-
evaluation process, if the uncertainties associated with themtions to some extent. However, it would be incorrect to rely
are excessively small. The smart rejection technique de-entirely on curve deviations, which can be very small for
scribed earlier is not effective in such cases. (Excessively smoothed data and cannot reflect nonrandom errors. Uncer-
small ‘uncertainties’ are common in the archival literature tainties of evaluated property valugscalculated with TDE
because of incomplete assessment of uncertainty or ambiguequations are calculated by the conventional formula
ous metadata, as described earlier in section 3. This results
commonly in highly inconsistent property data.) The presence N N oF oF\12
of data inconsistency or inadequate uncertainties for a data U= ZIZLCU ——
set can be revealed when a fitting equation has an invalid == 9P 9y

(8)
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where C; are elements of the covariance matri¥, is A second parameter that is used to check the validity of
the number of parameters, adéi/op are the first deriva- an evaluation is the relative assessed uncertdnty
tives of the property with respect to the equation param-
eters. R=U/NV (20)
During construction of a covariance matrix, some adjust-
ments to the formal procedure are applied. If the only source where V is the evaluated property value, athdl is the
of errors is random scattering with a normal distribution, evaluated uncertainty. IR is too high, depending on the
and the model is fully adequate, the covariance matrix property, it may indicate that the evaluation is not valid.
elements are divided by the number of data points reducedLarge R may be reasonable for evaluated vapor pressures,
by the number of parameters in order to reflect the dispersionwhere an order-of-magnitude value might be useful but are
of the mean values, and the Student factor (usually corre-less acceptable for densities or temperatures of phase
sponding to a 95% level of confidence) is applied to the transitions.
calculated uncertainties. The true distribution of errors is A third test for each property involving independent
usually far from normal, and all empirical equations are variables involves tests for validity of the curve shape. There
approximate by definition. To describe uncertainties more are individual validity criteria for essentially every property
adequately, some restrictions are made through applicationevaluated by TDE. For example, first and second derivatives
of an effective number of data points based on the statistical (with respect to temperature) of saturated vapor pressure
weight used in fitting, i.e., the weights of all selected data curves must be positive, and the second derivative of the
points are summed and divided by the largest weight. Then, saturated liquid density curves must be negative (also, the
the effective number of data points is restricted to not greater first derivative for essentially all compounds except water).
than 25, and the Student coefficient is applied. This procedure Some of the curve-shape criteria are strict, and if not satisfied,
is also used for uncertainty assessment of single-valuedthe equation is invalidated and substituted with predicted
properties, such as triple-poifi, and critical temperatures  values. Other, less strict, criteria can be expressed numeri-
T.. As noted earlier, critical pressurpsand critical densities  cally and are used for comparative assessment of different
pc are treated as part of the saturation curves and not asequations or parameter sets.
single-valued properties. Uncertainties for these are calcu- Through application of these three criteria, TDE gives
lated from the covariance matrices for the saturation equa-evaluated results consistent with available source data,
tions. predictions, and physical principles. In the worst case, when
The covariance matrix is a function of the mathematical the source data are internally inconsistent or do not pass
form of an equation, source data distribution, and the generalvalidation, the uncertainty of the evaluated values is deter-
deviation of the data from the equation. If the number of mined by that of the prediction methods used, but the
parameters in an equation is small, the calculated uncertain-evaluation basis is always clear. A key goal in development
ties are nearly uniform in the range of the independent of TDE was creation of a system for critical evaluation of
variables and tend to be underestimated. If the number of property data that could act autonomously. In the absence
parameters is large, the calculated uncertainties are excesef significant data errors, decision making is relatively
sively small in the middle and unrealistically high at the straightforward and involves selection of default equations
edges. To counteract this effect, TDE covariance matrices(i.e., model selection), number of parameters, application of
are generally reduced to rank 3 or 4. This is done after fitting predictions for filling data gaps, and detection of low-quality
by setting some of the parameters as constants with valuesdata points for rejection. To ensure that the results of an
obtained in the unrestricted fit (and covariance terms equal evaluation would not be highly erroneous, the program was
to zero) and recalculating the covariance for the remaining developed to not rely on perfect source data, and practically
parameters. In polynomial-like equations, parameters cor- every major operation such as evaluation of a property or
responding to terms of higher power are fixed for the consistency enforcement includes assessments of success and
covariance adjustment. validity checks for derived equations. If a failure is detected,
Quality, Validity, and Success of Evaluation At the a variety of remedial actions are tried, including reduction
end of the evaluation process additional checks are appliedin the number of equation parameters, change of the selected
to reduce the probability of seriously erroneous results default equation, additional source data validation, rejection
caused by errors in the source data or highly unusual dataof inconsistent data sets, rollback of consistency enforcement,

scenarios. substitution of property data by prediction, or, in the worst
The quality of fitQ represents how well an equation fits case, complete exclusion of a property from the evaluation
the source data. It is calculated with the formula results.
Program Structure and Interface. The program core is
N 0;\?] N written in the ChH+ language and, therefore, is highly
Q= Wie[—] /) w, 9 portable to different platforms. It is based on the-€ class
1= Ul ] & concept. The program is made up of a user interface and

computational core that includes the Compound, Prediction,
whereN is the number of data pointg; are their statistical  Property, and Model classes. The central class is the
weights,U; are estimated source data uncertainties, @nd Compound class, which holds all information about a
are deviations from the curve. @ is significantly greater  particular compound and supports operations for loading
than 1, the data are not adequately fit by the equation, andcompound source data from TDE-SOURCE, performing
the evaluation may be of no value. Substitution by predicted evaluations and accessing the primary (default equations and
values is usually done by TDE in such cases. numerical values) and secondary (alternative equations)
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Figure 7. Operational model of the TDE program. Text in bold indicates the three steady states of the program, as described in the text.

evaluation results. The Prediction class contains all data andand thermochemical property d&t&:3 XML technology**
methods necessary for property predictions, including the provides significant advantages for data exchange such as
molecular structure, methods, and method parameters. Thats ‘native’ interoperability based on ASCII code, modular
Property class contains all data on a particular property andstructure, and transparent readability by both humans and
the fitting equations. The Model class provides full imple- computers. Both the software and hardware communities
mentation of an equation, and each instance of the class storesupport this technology extensively. In 2002, IUPAC ap-
parameters for a particular property. The modular structure proved project 2002-055-3-024, XML-based IUPAC Stan-
of the program allows equations to be added and inter- dard for Experimental and Critically Evaluated Thermo-
changed without changes to the evaluation procedures.  dynamic Property Data Storage and Capfdrand estab-

The interface model (Figure 7) is based on three steadylished a Task Group to conduct it as one of the activities of
states. The first appears when the program is started, andhe Committee on Printed and Electronic Publicati&at
the only user option is to select a compound for evaluation. its meeting in January 2004,the Task Group accepted
After selection, all experimental data for the selected ThermoML as the framework of an emerging IUPAC
compound are extracted from the TDE-SOURCE databasestandard and approved the establishment of the ThermoML
or from a file saved previously. If structural information is namespace for #
not in TDE-SOURCE, the user is requested to draw the  ThermoML is fully implemented in TDE as the primary
structure. After selection of a compound (second steady method of data communication. TDE accepts user data files
state), the user can revise source data, add proprietary (‘user’)n ThermoML format, and all evaluation results are available
data, and start evaluation. After evaluation, in the third state, in the form of a ThermoML file. That file includes compound
the user can review evaluation results and request alternativgdentification, numerical values of evaluated properties (with
equations. All the functions of the second state remain defined uncertainties), and default and alternative equations
available, and the user can modify data and repeat theith their parameters and covariance matrices. ThermoML
evaluation as desired. output can be automatically parsed and processed by ap-

Data Communication. NIST/TRC in cooperation with  plications such as process simulation engines. Required
DIPPR (the Design Institute for Physical Properties of the components are the ThermoML schema and definition files
American Institute of Chemical Engineers) and IUPAC (the for equations, both of which are available at the NIST/TRC
International Union of Pure and Applied Chemistry) devel- Web site (www.trc.nist.gov/ThermoML.html). Equation defi-
oped ThermoML, an XML (Extensible Markup Language)- nition files contain the mathematical definitions for equations
based approach for storage and exchange of thermophysicalhrough importation of the MathML scheffaand define
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symbolic representation of equation variables and parameters. N ,

The ThermoML schema can be used by validating parsers P=Pp= )& «(T— Ttp)I (12)
when reading ThermoML data files. Equation definition files i=

provide Supporting Information about the equation that may ) ) ,

assist development of readers for ThermoML equations. whereTy, andpy, are respectively the triple-point temperature
ThermoML supports all TDE equations explicitly, and the @nd pressure anal are polynomial coefficients.

ThermoML definitions of all TDE equations are available ~ Vapor and Sublimation Pressure ConvergenceWhen
at the NIST/TRC web site noted above. one or more sublimation curves are known, in addition to

the vaporization curve, they must be consistent at the triple
5 ENFORCEMENT OF THERMODYNAMIC ppint(s)..Two consistency conditions are enforced in TDE.
CONSISTENCY First, adjacent vapor pressure and sublimation curves must
converge to the same triple-point pressymg This is
Levels of Consistency Enforcement Three different expressed by the following equation
levels of consistency enforcement are employed within
TDE: single-property enforcement (constraining a single Psall) = PeafCr) LT =Ty, (13)
fitting equation to be consistent with other properties), in-
block enforcement (constraining several equations within one The second condition is that the difference between the
property block to be mutually consistent), and interblock enthalpies of sublimation and vaporization derived from the
enforcement involving properties from different blocks. pressure equations &f, must yield the enthalpy of fusion.

Single-property procedures are applied for saturated vapor!f Py < 10 kPa andAZ is assumed to be 1, this second
pressures to ensure consistency with heat capacity difference§ondition can be expressed as
between the liquid and gas phases at low pressures and to
ensure that condensed-state phase boundary lines converge —R-T>[d In{ pg,(1)}/dT — d In{ ps,{cn}/dT] = A H
at triple points. In-block procedures are used for all vapor (14)
and sublimation pressures (phase diagram block) as well as
for saturated liquid and gas densities (volumetric block) and All of the fitted equations are accompanied by their relative
single-phase and saturated gas densities (volumetric block) weights. Those for experimental and vapor pressure data are
An interblock procedure refines the gas density and enthalpythe same as those used to fit the properties individually. The
of vaporization through improved consistency with vapor weights for the two enforcement conditions (egs 13 and 14)
pressures and liquid densities. Consistency conditions areare calculated with the following equation. For eq 13, the
either introduced with appropriately high weights to the weightwa is
objective functions or are implied by common parameters.

Details of each example are provided in the following Wy = kat (LW, + IMW,) ™ = Ka W (15)
paragraphs.

Vapor Pressure Constraint Constraint of vapor-pressure  WhereW,, is the sum of the weights for the vapor pressure
extrapolations to low temperatures with liguigas heat  data and\sis the sum of the weights for the sublimation
capacity differences is a common techni§U@DE uses an  pressure data. The formulation results\Wbeing closely
analogous approach. Assuming the difference in compress-elated to the lesser &, andWsu, For eq 14, the weight
ibility factors Z for the gas and liquidZ; — Z) = 1 at low W is
temperatures whene,: < 10 kPa, the heat capacity differ-
ence ACsy between the saturated liquid and gas can be = Wg = kg* (1MW, + l/\Nsub)_llu Afust = kg*W/U Afust
derived from the temperature dependence of the vapor (16)
pressure

whereUangi IS the expanded combined uncertainty for the
AC, = Coi(9) — Ceufl) = R:(T>dIn(p,,)/dT? + enthalpy of fusiomAs,sH. This approach is needed because,

generally, there are very different amounts of experimental

2:T+d In(pgy)/dT) (11) data in each phase region. The constantsand kg are

determined empirically to optimize the fitting performance.
Csa(g) can be approximated by the heat capacity of the ideal  The results of enforcement of thermodynamic consistency
gas at such low pressures. Available validated ideal-gas heat T, are illustrated in Figure 8. Applying these conditions
CapaCitie§>8 are stored in the TDE database. These evaluatedcan lead to an invalid Shape of the vapor pressure and
values are used in preference to any experimental valuessyplimation curves, if the source data are highly erroneous
stored in TDE-SOURCE. The heat capacity conditions and inconsistent. In that case, it is necessary to decide which
represented in eq 11 with the weights based on heat capacityyroperty is most likely erroneous and to derive the equation
uncertainties are added to the ObjeCtive function for vapor for it from the other properties_ Genera”y, sublimation
pressure fopss < 10 kPa with steps of 10 K. pressures are more prone to measurement error and, conse-

Condensed-State Phase Boundary Convergendequa- guently, are rejected in such an evaluation.
tions describing condensed-state phase boundaries (erystal  psafLiquid) and psa(Gas) Consistency aff.. Consistency
liquid and crystat-crystal) are constrained to converge at of saturated liquid and gas densities at the critical temperature
triple points. The polynomial form of the equations used for T is satisfied through a common parameter in the equations
these boundaries allows simple fulfillment of this constraint (the critical density.) by solving a joint least-squares system
through the representation equation of equations. Figure 9 shows a demonstration of this
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Figure 8. (a) Vapor pressure and sublimation curve for pyrrole without enforcement of consistehgy(la} The same data scenario with
automatic enforcement of thermodynamic consistency in terms of value and relative slgpéhe relative slopes are directly related to
the enthalpy of the phase transitiofig(H for the melting transition).

enforcement. The mathematical forms of the equations ensureRepresentation of these regions is planned for a future release

an infinite slope aff.. of the program.) The consistency conditions at the connection
Gas-Phase Densitiegsa(Gas) and the Virial Equation. temperatur@ g are as follows: (1) the saturated density and

The authors are unaware of an equation suitable for (2) its first derivative by temperature derived from the virial

representation of low- and high-pressure gas densities withand vapor pressure equations must be equal to those derived

low experimental data coverage. To address this problem, afrom the saturated gas density equation:

combination of the virial equation (as function of molar

volume) at low pressures and the saturated-phase density Pvirial(Ter Psal To)) = Psal To) a7)
equation at high pressures is used for the gas phase. The
smooth connection point is below 500 kPa if the virial dpyirial(Te:Psal Te))/AT = dpg(Te)/dT (18)

equation is limited to the second virial coefficient or above

0.85T. if the third virial coefficient is included. The third ~ Weightswc for the enforcement conditions (egs 17 and 18)
virial coefficient is used, if a prediction can be made or are the same and are

experimental data are available fe(gas) forp > 500 kPa.

(Note: Densities forT > 0.85T. in the single-phase gas are We = ke {IW,gag) T 1/\Npsat(ga‘,,}_1 =KW (19)
not represented in version 1.0 of TDE. Also, all single-phase

densities folT > T¢ (i.e., the fluid region) are not represented. whereW,gas)is the sum of the weights for the single-phase
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Figure 9. Demonstration of enforced consistency between the saturated density for thepligllicind gaspsa(g) curves at the critical
point.

gas density data andl,sagas)iS the sum of the weights for  condition is constrained at separate temperatures with a step
the saturated gas density data. As for eq 15 above, theof 5 K. The weightwp for the consistency equation (eq 20)
formulation results iV being closely related to the lesser is

of Wigas) @nd Wisaygas) With the constantcc determined

empirically. . . . WD = KD'{ 1/\Np(gas)+ lM/psat(gas‘b’ _1/UAvap-Iz =

Consistency ofpsa(Gas) with Enthalpies of Vaporiza- 5
tion Derived from Vapor Pressuresps,;and the Clapeyron KW/ Unvapt (22)
Equation. A similar procedure is used for interblock ) _ ) )
consistency enforcement before the end of an evaluation.WhereUavap is the uncertainty calculated with the covariance
Revised equations are a virial equation for single-phase gasmatrix for eq 21. The effect of this interblock consistency
density at low pressures, a saturated gas density equation agnforcement is shown in Figure 10.
high pressures, and an enthalpy of vaporization equation.

Other involved properties are vapor pressure and liquid 6. APPLICATION OF PREDICTION METHODS

density. The objective function is the sum of squares of the Background. The aim in development of predictions in
deviations from the fitted equations (both the property TDE was not to invent new methods but to implement an
representations and enforcement ConditionS) mult|pl|8d by a|gorithm for app|y|ng existing methods to create an ap-
appropriate relative weights. The objective sum is minimized proach that is broadly applicable across all classes of organic
by a nonlinear optimization technique. The virial equation compounds. The most important aspect of this approach is
is represented in the nonlinear for(gas)= f(T, p). This  that all methods be validated against critically evaluated
form is used to ensure that the equation gives a solution atexperimental data. This provides the basis for estimations
the saturation pressure, even with little or no experimental of uncertainty for all predicted values. The requirement of
data near the saturation line. uncertainty estimation is essential for integrating predicted

In addition to the source data and seamless connectiongata into the TDE evaluation process. As described earlier,
conditions described in the previous section (eqs 17 and 18),3|| data used by TDE have associated estimates of their
consistency of the enthalpy of vaporizatidnsH derived  expanded combined uncertainties with approximate levels
from thepsacurve together with the gas and liquid densities  of confidence of 95%. The initial release of the TDE software
(converted to molar volume¥y) through the Clapeyron  (version 1.0) includes methods based on the principles of
equation corresponding states (CS) and group contribution (GC).

Additional, more computationally intensive prediction schemes,
AvagH = T+(dpo{dT){Vin(9) — Vim()} (20) such as molecular dr;/namics or ab initio%uantum methods,
) _ ) will be considered for future releases, particularly as reliable
is enforced withAsgH represented by the equation bases for estimates of combined uncertainties for these
nTerms methods are developed. Though applied specifically to CS
— ST 20 (1 2 and GC methods, the general approach described here can
N(Avat) =2, + 2 & In@-T) - (21) be applied universally.

The general approach for validation of predictive methods
wherea and T, = T/T, are fitted parameters. Equation 21 and estimation of their combined uncertainty is described
ensures a valid shape for tiig,H values derived with eq  here. For this, it is necessary to give quantitative definitions
20 even in the absence of experimemal H values. This to two terms used in molecule comparisons that are qualita-
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Figure 10. Action of interblock consistency enforcement on the saturated gas deggii@s) in an unfavorable data situation. Data are
shown in terms of the compressibility factér Values with large error bars at high temperature are low-quality experimental values. The
curve represents the evaluated valuespfgfgas) expressed in terms @f,(gas).

tive in nature: similarity and complexity. The mathematical variety of compounds for which no experimental data are
definitions of these are not universal and can vary from available and develop rejection criteria based on these results.

property to property or method to method, depending onthe , |mplement an automated, case-based method selection
sensitivity of the property or method to the presence of scheme with the ability to select the method with the best

particular substructures or functional groups. performance for compounds most similar to the query
General Prediction Approach. The key issue in develop-  compound.

ing a property prediction system is how to recognize strengths
and shortcomings for a particular method so that the best
method can be selected for a given molecule and property.
Generally, there are two serious problems with predictive h ical definiti for similari d lexi
methods. First, the predictive ability is often quite limited, (Mat ematical definitions for similarity and complexity are
due to an inadequate experimental data set against which?'Ven later in this s.e-ct|o!1.) ) ) o
the parameters of the method were optimized. Parameters 1he overall algorithm implementing these design criteria
optimized with a small data set tend to have a bias toward IS shovx{n in Figure 11. The cqllgcnon of critically evaluate'd
the structural features represented in that set. This bias carProperties used with the prediction scheme for TDE contains
cause serious errors when the parameters are used to predi@out 880 normal boiling temperaturds, 550 critical
properties of compounds with features beyond those in thetémperaturesTc, 450 critical pressures., 350 critical
small set. Second, during development, there is often little VolumesVe, 680 liquid density values &, and 270 acentric
performance evaluation to investigate the predictive capabili- factors. This evaluated data set was created through single-
ties of the method. In part, this problem can be traced to a Property and multiproperty consistency checks and provides
lack of experimental data. Only predictions for compounds @ collection that exceeds that used in the production of any
not included in the original development can provide a valid SPecific prediction method, thus allowing for a performance
test for that method, which in turn requires the availability analysis based on data outside of the original set used in
of new data on previously unmeasured compounds. ConseParameter optimization.
quently, knowledge of the predictive ability of a method is  TDE (version 1.0) uses two types of predictive methods:
often poor. group contribution (GC}?*°corresponding states (CB)and
The approach used within TDE was developed to addresstheir combination (GC-CS). CS methods require knowledge
these problems and to provide reliable property predictions of the critical properties, which must be estimated by a GC
by making the best use of available experimental data andmethod, when no experimental critical properties are avail-
correlations. The design principles for this approach follow. able, as is the case for most compounds. The only input
o Establish a physicochemical property database thatrequirementfor a GC method is structural information, which
contains critically evaluated experimental data with reliable can be expressed as an atom connectivity table. Based on
estimates of uncertainty. the connectivity table, the TDE software extracts groups
o Create a predictive method performance database bydefined for each GC method. Currently, TDE includes atom
evaluating methods against the critically evaluated data. connectivity tables and images for 14 000 organic com-
o Examine the validity (against established data correla- pounds. A simple structure drawing interface is provided for
tions) of predicted property values for a large number and input of structures not included.

 Estimate uncertainties for the predicted property values
based on (a) the performance of the method for similar
compounds and (b) the complexity of the query compound.
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Figure 11. Outline of the property prediction approach.

Table 4 shows the complete list of properties for which must be carried out in a carefully constructed sequence,
predictive methods are available in TDE 1.0. Expansions to which is shown in Figure 12.
include additional properties and those of mixtures and Prediction Method Selection The case-based method
reactions are planned. The workflow for the predictive selection algorithm used in TDE is based on performance
approach in TDE can be summarized as follows. For any information compiled for all methods for compounds with
particular compound, TDE searches the TDE-SOURCE well-established properties that are similar to the query
database for relevant experimental data, does preliminary data&compound. For properties having multiple prediction methods
processing, and provides the predictive method with all (Typ, Te, Pe, @ndVe in TDE 1.0) automated selection is based
pertinent experimental data values and atom-connectivity on the best performance for similar molecules (BPSM). This
information. When the structural information for a compound approach was chosen after analysis of various others,
is not available, the user is allowed to draw the structure, including averaging of results from all available methods,
and the connectivity table is produced by TDE. Group weighted average of all methods based on performance
parameters are then extracted and used to compute complexagainst similar molecules, and an average of the two or three

ity and similarity information needed for method selection
and uncertainty estimation.

Except for a few properties, such as normal boiling
temperaturdy, estimation requires other property values as
input. For example, most estimation methods for critical
temperature requir&,, while for the method of Sastri and
Rad™* (for liquid viscosity), Ty, T¢, pe, and the acentric factor

best methods. To clarify and quantify how the BPSM
approach works, an example for prediction of critical
temperaturel, is given here.

In this example, four group contribution methods TQr
prediction (listed in Table 4) are tested against 399 organic
compounds for which critically evaluated, values are
available with small uncertainties. Table 5 shows the average

are needed. To address this issue, the estimation of propertieabsolute deviations and standard deviations of preditied
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Property estimation
method called for property X:
Estimate(X)

A property X is available if it

es has a valid previously predicted
Is X available? value or data is available from
TDE

no
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X=Tpp Vo Z estimation for
or C,(1G)? A property X
no (See figure 15)
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Figure 12. Workflow for property prediction. Properties predicted are the normal boiling temperatygreritical temperatureT,; critical
pressurepg; critical volume,V,; critical compressibility Z; acentric factorw; liquid density,p(l); ideal gas heat capacit{,(IG); liquid
heat capacityCy(l); gas viscosity(g); liquid viscosity,7(l); gas thermal conductivity}(g); and liquid thermal conductivity(l).

Table 5. Average Absolute DeviatiolA and Standard Deviation Table 6. Correctness of Model Selection Using the BPSM (Best
of CalculatedT. from Critically EvaluatedT, for 399 Organic Performance on Similar Molecules) Approach for Predictiomof
Compounds by Various Prediction Methods and the Best
Performance on Similar Molecules (BPSM) Approach correctness compounds percent
method AIK alK Na > 10 K? S :Zl?_g 3%
Joback and Reff 7.1 11.3 90 C 64 16
Wilson and Jaspers6éh 5.8 7.9 75 D 19 5
Constantinou and Gafi 15.4 29.2 132 total 399 100
Marrero and Pardill&® 5.2 9.1 59
BPSM 35 55 26 aCorrectness is defined as follows: # the best method was
selected, B= the second best method was selectee; the third best
aThe final column represents the number of compoufor which method was selected, B the poorest method was selected.

the deviation of the predicted value from the critically evaluated value
is greater than 10 K.

Collectively, the results shown in Table 5 demonstrate that
the BPSM approach is superior to any one of the four

for the methods and the BPSM technique relative to the
methods alone.

critically evaluatedT, values for the test compounds. Table
5 also lists the number of compounds with deviations greater  Another measure of the success of the BPSM approach is
than 10 K between predicted and critically evaluaed  shown in Table 6, which lists the “correctness” of method
values. The results indicate that the BPSM approach producesselection for compounds considered in the test. For the 399
far fewer large deviations than any of the individual methods. compounds in the test, the method providingThprediction
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P . Inputs received Table 7. Identification of Structural Groups Used for Compound

Request property «Atom connectivity table Similarity Analysi$
for current molecule ) *Property code OH OH

A

*Decompose structure

Analyze molecular structure into groups

*Determine complexity factor
et

rCH= 3 5

A Calculate similarity factor for rC= 3 1

. o ewery molecule present in the -CH; 2 0
Determine similarity factors method performance database _OH 1 )

for this property

i ar indicates that the group is part of a ring structure.

Determine 5 most similar . o
molecules fering sensitivities to stereostructural features, substructure

size, and functional group types.
Within TDE, molecule similarity is used for selecting

Calculate the average error over

A the 5 most similar molecules . L
Rate model performance for each method available for the suitable prediction methods for each query compound based
requested property. Rank the on results for similar molecules. Considering that the number
methods from best to worst and type of functional groups in a compound play a major
A role in determining its thermodynamic properties, the simi-
Use best method to larity definition used in TDE is based on differences in
estimate property Use the average error over functional group numbers and types. We define similarity
similar molecules together with as
L the complexity factor to
estimate the uncertainty. S = /
Perform uncertainty analysis When no molecules meet the S l/(l + ’ﬂ) (23)
2}?&"3“.2’;;1?;'?2‘5523?".22 where represents differences between two compounds (A
< uncertainty. ). and B) and is expressed as
g — A B
Return property IAB) = ZWi'{N =N }i (24)

N

Figure 13. Workflow for prediction method selection based on In this equationw; is the weighting factor for théh type
performance against critically evaluated property data. structural groupN* and N8 are the number of groups of
. typei in each compound, and the summation is over all
closest to the critically evaluated value was chosen for 203 structural groups present in the two molecules. The weighting

compounds (51%). For 113 compounds the method thmfactors are necessary because, for example, highly polar

produced the second smallest deviation was selected, for 64groups, such as-OH, —COOH, and—NH,, can have a

compounds the method producing the third smallest deviation cg

. arger impact for certain properties (suchlgsthan nonpolar
was selected, and the worst available method was selecte 9 P prop ( % P

for %9 'compounds. Of Fhese 19 compounds, only seven have r(')I'l#(;st'wo molecules shown in Table 7 are used here in a
deV|at|on_s from the cr|t|(_:ally evaluated values_greater than sample calculation of the quantitative measure of similarity.
10 K_. This performance is far better th_an any single method The difference between the molecules is expressed as
and is the best of any of the composite methods tested.

Figure 13 shows the general algorithm of the prediction I(A,B) = 2w(rCH=) + 2w(rC=) + 2w(—CH,) (25)
method selection scheme. For each query compound, TDE
analyzes its structural components, gathers information from Various weighting factorsv for each functional group are
the related method performance table, finds the five com- defined and used in TDE. The factors are assigned according
pounds that are most similar to the query compound (asto the influence of each functional group on the particular
defined in the next section), and uses the method thatproperty being predicted.
produces the smallest errors for the five similar compounds Complexity. The complexity of a compound is an
to predict the property for the query compound. Currently, important factor that can have a substantial effect on the
method performance information has been established forreliability of property estimations. Experience shows that
normal boiling temperatur®,, critical temperaturd., critical predictions for complex compounds, such as molecules with
pressurep., and critical volumev.. multiple polar groups or fused rings, generally have larger

Similarity of Organic Compounds. The concept of  deviations from reliable experimental values than those for
compound similarity plays a key role in TDE both in simpler molecules such as short-chain alkanes or compounds
selection and error estimation for prediction methods. There with single functional groups. Therefore, it is necessary to
is no unique definition for similarity because the attributes define molecular complexity mathematically so that uncer-
that make molecules similar for one application will not tainties of predicted properties can be estimated with
necessarily be the same for another. For example, similarconfidence.
compounds in Quantitative StructurBroperty Relationships Like similarity, it is not possible to define molecular
(QSPR) can be very different from those in Quantitative complexity in a generalized way for all compounds, because
Structure-Activity Relationships (QSAR), because of dif- the complexity of a compound is closely related to the
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Table 8. Rules for Calculating Complexity,’ 2 U=cr A+ s Ve 0.5 (26)
condition effect on complexity (C)
beginning complexity for all molecules c=1 Here, c; and c, are coefficients that are obtained by
for each>CH- group 1 minimizing the difference between estimated uncertainties
for each>C< group +2 S - .\
if molecule has groups from class 1 +2+ (N, — 1p and prediction deV|at|p|js frqm critically evaluated yalues.
if molecule has=C= groups +2+4-(Ng— 1) For example, the coefficients in eq 26 fiywere determined
if molecule has groups from class 2 +3+5-(N2—1)P to bec; = 1.2 andc, = 2.2. The estimated uncertainties for
if molecule has groups from class 3 +4410- (N — 1 predicted T, by the BPSM method for the 399 organic
if molecule has exactly one carbon group +5 . .
from class 4 compounds in the critically evaluated data set were calculated
if molecule has exactly two carbon +3 and were found to be greater than or equal to the observed
groups from class 4 difference in 95% of the cases with an average value of 9.8
if molecule contains a single ring with +30 K, which is not excessively large.
if n?(’)fé’ccl’ﬁ:féﬁgas a single ring with 110 . In summary, an approach f(_Jr property prediction has been
6 or 7 atoms implemented in TDE that relies on a method performance
if molecule contains a single ring with + 20 database and quantitative measures of the similarity and
_ 8or9atoms ) o complexity of compounds. With this information a robust
i mﬂ?é?g‘::?aﬁogﬁg‘;: single ring with +30 prediction scheme is provided with realistic estimates of
if molecule contains two rings +30 expanded combined uncertainties for all values.
if molecule contains more than two rings + 50

o ) . 7. CONCLUSIONS AND FUTURE DEVELOPMENT
aComplexity is determined based on the following classes of

groups: Class 1: carbons with double or triple bonds not connected (1) NIST ThermoData Engine (TDEromplies with all
tfs? O(Zrlallise:)’,('c—egtH:C—%—Cliisoz:—gl’-lgl7—?{3’:6)'\(]);’ _‘(%’lc_)gf' the requirements necessary for implementation of the dy-
_NH'Z, >NH"_N:: NH:’, —ng, >sd, ~S0, Class 4— class 1 namic d‘_a\ta.e\_/aluanon concept. The scope of the first version
plus —CHs, >CH,, >CH—, >C=<. ® Ny, Ny, andN; are the number of ~ Of TDE is limited to pure compounds.

groups from class 1, 2, or 3, respectively\y is the number of (2) Predictive capabilities of the first TDE version consist
=C= groups. of 28 predictive methods based on group contribution and

corresponding states principles and limited to the compounds
property being considered. Therefore, the definition of Whose molecules consist of carbon, hydrogen, oxygen,
complexity is problem specific. We have defined a set of nltroge_n, sulfur, qu_qune, chlorine, bromine, iodine, and, in
rules (Table 8) for calculating complexity for a compound. SOme instances, silicon.
For any Compound, its Comp|exity can be obtained by (3) Further development will include incorporation of
combining the group complexity values in Table 8. The computational tools for generating equations of state on-
complexity of a compound is related to the group types and demand depending on the data ‘scenario’ as well as
numbers of groups in a compound. This set of rules was implementation of daily updates of the TDE-SOURCE local
compiled based on analysis of results for normal boiling data storage facility for TDE using a Web multitier dis-
temperature3, and critical properties and is expected to be Semination architecture. Longer-term plans include expansion
suitable for most other pure compound properties. The rulesOf TD_E to mclud_e critical datg e_valuatlon for binary mixtures
connect the features of a compound as described by jts@nd incorporation of predictive methods beyond group
structural components (i.e., groups) with the reliability of Ccontribution and corresponding states techniques.
related group contribution methods in the predictionTpf
and critical properties. For example, thelkanes of 30 or ACKNOWLEDGMENT
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